|
[[Back]](..) |
|
|
|
# VCTK |
|
|
|
[VCTK](https://datashare.ed.ac.uk/handle/10283/3443) is an open English speech corpus. We provide examples |
|
for building [Transformer](https://arxiv.org/abs/1809.08895) models on this dataset. |
|
|
|
|
|
## Data preparation |
|
Download data, create splits and generate audio manifests with |
|
```bash |
|
python -m examples.speech_synthesis.preprocessing.get_vctk_audio_manifest \ |
|
--output-data-root ${AUDIO_DATA_ROOT} \ |
|
--output-manifest-root ${AUDIO_MANIFEST_ROOT} |
|
``` |
|
|
|
Then, extract log-Mel spectrograms, generate feature manifest and create data configuration YAML with |
|
```bash |
|
python -m examples.speech_synthesis.preprocessing.get_feature_manifest \ |
|
--audio-manifest-root ${AUDIO_MANIFEST_ROOT} \ |
|
--output-root ${FEATURE_MANIFEST_ROOT} \ |
|
--ipa-vocab --use-g2p |
|
``` |
|
where we use phoneme inputs (`--ipa-vocab --use-g2p`) as example. |
|
|
|
To denoise audio and trim leading/trailing silence using signal processing based VAD, run |
|
```bash |
|
for SPLIT in dev test train; do |
|
python -m examples.speech_synthesis.preprocessing.denoise_and_vad_audio \ |
|
--audio-manifest ${AUDIO_MANIFEST_ROOT}/${SPLIT}.audio.tsv \ |
|
--output-dir ${PROCESSED_DATA_ROOT} \ |
|
--denoise --vad --vad-agg-level 3 |
|
done |
|
``` |
|
|
|
## Training |
|
(Please refer to [the LJSpeech example](../docs/ljspeech_example.md#transformer).) |
|
|
|
## Inference |
|
(Please refer to [the LJSpeech example](../docs/ljspeech_example.md#inference).) |
|
|
|
## Automatic Evaluation |
|
(Please refer to [the LJSpeech example](../docs/ljspeech_example.md#automatic-evaluation).) |
|
|
|
## Results |
|
|
|
| --arch | Params | Test MCD | Model | |
|
|---|---|---|---| |
|
| tts_transformer | 54M | 3.4 | [Download](https://dl.fbaipublicfiles.com/fairseq/s2/vctk_transformer_phn.tar) | |
|
|
|
[[Back]](..) |
|
|