pv_segmentation / app.py
mouadenna's picture
Update app.py
eb12373 verified
raw
history blame
8.1 kB
import streamlit as st
import geopandas as gpd
import leafmap.foliumap as leafmap
from PIL import Image
import rasterio
from rasterio.windows import Window
from stqdm import stqdm
import io
import zipfile
import os
import albumentations as albu
import segmentation_models_pytorch as smp
from albumentations.pytorch.transforms import ToTensorV2
from shapely.geometry import shape
from shapely.ops import unary_union
from rasterio.features import shapes
import torch
import numpy as np
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
ENCODER = 'se_resnext50_32x4d'
ENCODER_WEIGHTS = 'imagenet'
# Load and prepare the model
@st.cache_resource
def load_model():
model = torch.load('deeplabv3+ v15.pth', map_location=DEVICE)
model.eval().float()
return model
best_model = load_model()
def to_tensor(x, **kwargs):
return x.astype('float32')
# Preprocessing
preprocessing_fn = smp.encoders.get_preprocessing_fn(ENCODER, ENCODER_WEIGHTS)
def get_preprocessing():
_transform = [
albu.Resize(512, 512),
albu.Lambda(image=preprocessing_fn),
albu.Lambda(image=to_tensor, mask=to_tensor),
ToTensorV2(),
]
return albu.Compose(_transform)
preprocess = get_preprocessing()
@torch.no_grad()
def process_and_predict(image, model):
if isinstance(image, Image.Image):
image = np.array(image)
if image.ndim == 2:
image = np.stack([image] * 3, axis=-1)
elif image.shape[2] == 4:
image = image[:, :, :3]
preprocessed = preprocess(image=image)['image']
input_tensor = preprocessed.unsqueeze(0).to(DEVICE)
mask = model(input_tensor)
mask = torch.sigmoid(mask)
mask = (mask > 0.6).float()
mask_image = Image.fromarray((mask.squeeze().cpu().numpy() * 255).astype(np.uint8))
return mask_image
def extract_tiles(map_file, model, tile_size=512, overlap=0, batch_size=4, threshold=0.6):
tiles = []
with rasterio.open(map_file) as src:
height = src.height
width = src.width
effective_tile_size = tile_size - overlap
for y in stqdm(range(0, height, effective_tile_size)):
for x in range(0, width, effective_tile_size):
batch_images = []
batch_metas = []
for i in range(batch_size):
curr_y = y + (i * effective_tile_size)
if curr_y >= height:
break
window = Window(x, curr_y, tile_size, tile_size)
out_image = src.read(window=window)
if out_image.shape[0] == 1:
out_image = np.repeat(out_image, 3, axis=0)
elif out_image.shape[0] != 3:
raise ValueError("The number of channels in the image is not supported")
out_image = np.transpose(out_image, (1, 2, 0))
tile_image = Image.fromarray(out_image.astype(np.uint8))
out_meta = src.meta.copy()
out_meta.update({
"driver": "GTiff",
"height": tile_size,
"width": tile_size,
"transform": rasterio.windows.transform(window, src.transform)
})
tile_image = np.array(tile_image)
preprocessed_tile = preprocess(image=tile_image)['image']
batch_images.append(preprocessed_tile)
batch_metas.append(out_meta)
if not batch_images:
break
batch_tensor = torch.cat([img.unsqueeze(0).to(DEVICE) for img in batch_images], dim=0)
with torch.no_grad():
batch_masks = model(batch_tensor)
batch_masks = torch.sigmoid(batch_masks)
batch_masks = (batch_masks > threshold).float()
for j, mask_tensor in enumerate(batch_masks):
mask_resized = torch.nn.functional.interpolate(mask_tensor.unsqueeze(0),
size=(tile_size, tile_size), mode='bilinear',
align_corners=False).squeeze(0)
mask_array = mask_resized.squeeze().cpu().numpy()
if mask_array.any() == 1:
tiles.append([mask_array, batch_metas[j]])
return tiles
def create_vector_mask(tiles, output_path):
all_polygons = []
for mask_array, meta in tiles:
mask_array = (mask_array > 0).astype(np.uint8)
mask_shapes = list(shapes(mask_array, mask=mask_array, transform=meta['transform']))
# to shapely polygons
polygons = [shape(geom) for geom, value in mask_shapes if value == 1]
all_polygons.extend(polygons)
#union of all polygons
union_polygon = unary_union(all_polygons)
# create gdf
gdf = gpd.GeoDataFrame({'geometry': [union_polygon]}, crs=meta['crs'])
# Save to file
gdf.to_file(output_path)
#area in square meters
area_m2 = gdf.to_crs(epsg=3857).area.sum()
return gdf, area_m2
def display_map(shapefile_path, tif_path):
st.title("Map with Shape and TIFF Overlay")
mask = gpd.read_file(shapefile_path)
if mask.crs is None or mask.crs.to_string() != 'EPSG:3857':
mask = mask.to_crs('EPSG:3857')
bounds = mask.total_bounds # [minx, miny, maxx, maxy]
center = [(bounds[1] + bounds[3]) / 2, (bounds[0] + bounds[2]) / 2]
m = leafmap.Map(
center=[center[1], center[0]], # leafmap uses [latitude, longitude]
zoom=10,
crs='EPSG3857'
)
m.add_gdf(mask, layer_name="Shapefile Mask")
m.add_raster(tif_path, layer_name="Satellite Image", rgb=True, opacity=0.9)
m.to_streamlit()
def main():
st.title("PV Segmentor")
uploaded_file = st.file_uploader("Choose a TIF file", type="tif")
if uploaded_file is not None:
st.write("File uploaded successfully!")
threshold = st.slider(
'Select the value of the threshold',
min_value=0.1,
max_value=0.9,
value=0.6,
step=0.05
)
overlap = st.slider(
'Select the value of overlap',
min_value=50,
max_value=150,
value=100,
step=25
)
st.write('Selected threshold value:', threshold)
st.write('Selected overlap value:', overlap)
if st.button("Process File"):
st.write("Processing...")
with open("temp.tif", "wb") as f:
f.write(uploaded_file.getbuffer())
best_model.float()
tiles = extract_tiles("temp.tif", best_model, tile_size=512, overlap=overlap, batch_size=4, threshold=threshold)
st.write("Processing complete!")
output_path = "output_mask.shp"
result_gdf, area_m2 = create_vector_mask(tiles, output_path)
st.write("Vector mask created successfully!")
st.write(f"Total area occupied by PV panels: {area_m2:.4f} m^2")
# Offer the shapefile for download
shp_files = [f for f in os.listdir() if
f.startswith("output_mask") and f.endswith((".shp", ".shx", ".dbf", ".prj"))]
with io.BytesIO() as zip_buffer:
with zipfile.ZipFile(zip_buffer, 'a', zipfile.ZIP_DEFLATED, False) as zip_file:
for file in shp_files:
zip_file.write(file)
zip_buffer.seek(0)
st.download_button(
label="Download shapefile",
data=zip_buffer,
file_name="output_mask.zip",
mime="application/zip"
)
display_map("output_mask.shp", "temp.tif")
#os.remove("temp.tif")
#for file in shp_files:
# os.remove(file)
if __name__ == "__main__":
main()