File size: 3,738 Bytes
abc4e5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import json
import os

import torch
import yaml


def traverse_dir(
        root_dir,
        extensions,
        amount=None,
        str_include=None,
        str_exclude=None,
        is_pure=False,
        is_sort=False,
        is_ext=True):

    file_list = []
    cnt = 0
    for root, _, files in os.walk(root_dir):
        for file in files:
            if any([file.endswith(f".{ext}") for ext in extensions]):
                # path
                mix_path = os.path.join(root, file)
                pure_path = mix_path[len(root_dir)+1:] if is_pure else mix_path

                # amount
                if (amount is not None) and (cnt == amount):
                    if is_sort:
                        file_list.sort()
                    return file_list
                
                # check string
                if (str_include is not None) and (str_include not in pure_path):
                    continue
                if (str_exclude is not None) and (str_exclude in pure_path):
                    continue
                
                if not is_ext:
                    ext = pure_path.split('.')[-1]
                    pure_path = pure_path[:-(len(ext)+1)]
                file_list.append(pure_path)
                cnt += 1
    if is_sort:
        file_list.sort()
    return file_list


    
class DotDict(dict):
    def __getattr__(*args):         
        val = dict.get(*args)         
        return DotDict(val) if type(val) is dict else val   

    __setattr__ = dict.__setitem__    
    __delattr__ = dict.__delitem__


def get_network_paras_amount(model_dict):
    info = dict()
    for model_name, model in model_dict.items():
        # all_params = sum(p.numel() for p in model.parameters())
        trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)

        info[model_name] = trainable_params
    return info


def load_config(path_config):
    with open(path_config, "r") as config:
        args = yaml.safe_load(config)
    args = DotDict(args)
    # print(args)
    return args

def save_config(path_config,config):
    config = dict(config)
    with open(path_config, "w") as f:
        yaml.dump(config, f)

def to_json(path_params, path_json):
    params = torch.load(path_params, map_location=torch.device('cpu'))
    raw_state_dict = {}
    for k, v in params.items():
        val = v.flatten().numpy().tolist()
        raw_state_dict[k] = val

    with open(path_json, 'w') as outfile:
        json.dump(raw_state_dict, outfile,indent= "\t")


def convert_tensor_to_numpy(tensor, is_squeeze=True):
    if is_squeeze:
        tensor = tensor.squeeze()
    if tensor.requires_grad:
        tensor = tensor.detach()
    if tensor.is_cuda:
        tensor = tensor.cpu()
    return tensor.numpy()

           
def load_model(
        expdir, 
        model,
        optimizer,
        name='model',
        postfix='',
        device='cpu'):
    if postfix == '':
        postfix = '_' + postfix
    path = os.path.join(expdir, name+postfix)
    path_pt = traverse_dir(expdir, ['pt'], is_ext=False)
    global_step = 0
    if len(path_pt) > 0:
        steps = [s[len(path):] for s in path_pt]
        maxstep = max([int(s) if s.isdigit() else 0 for s in steps])
        if maxstep >= 0:
            path_pt = path+str(maxstep)+'.pt'
        else:
            path_pt = path+'best.pt'
        print(' [*] restoring model from', path_pt)
        ckpt = torch.load(path_pt, map_location=torch.device(device))
        global_step = ckpt['global_step']
        model.load_state_dict(ckpt['model'], strict=False)
        if ckpt.get("optimizer") is not None:
            optimizer.load_state_dict(ckpt['optimizer'])
    return global_step, model, optimizer