File size: 4,091 Bytes
abc4e5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
'''
author: wayn391@mastertones
'''

import datetime
import os
import time

import matplotlib.pyplot as plt
import torch
import yaml
from torch.utils.tensorboard import SummaryWriter


class Saver(object):
    def __init__(
            self, 
            args,
            initial_global_step=-1):

        self.expdir = args.env.expdir
        self.sample_rate = args.data.sampling_rate
        
        # cold start
        self.global_step = initial_global_step
        self.init_time = time.time()
        self.last_time = time.time()

        # makedirs
        os.makedirs(self.expdir, exist_ok=True)       

        # path
        self.path_log_info = os.path.join(self.expdir, 'log_info.txt')

        # ckpt
        os.makedirs(self.expdir, exist_ok=True)       

        # writer
        self.writer = SummaryWriter(os.path.join(self.expdir, 'logs'))
        
        # save config
        path_config = os.path.join(self.expdir, 'config.yaml')
        with open(path_config, "w") as out_config:
            yaml.dump(dict(args), out_config)


    def log_info(self, msg):
        '''log method'''
        if isinstance(msg, dict):
            msg_list = []
            for k, v in msg.items():
                tmp_str = ''
                if isinstance(v, int):
                    tmp_str = '{}: {:,}'.format(k, v)
                else:
                    tmp_str = '{}: {}'.format(k, v)

                msg_list.append(tmp_str)
            msg_str = '\n'.join(msg_list)
        else:
            msg_str = msg
        
        # dsplay
        print(msg_str)

        # save
        with open(self.path_log_info, 'a') as fp:
            fp.write(msg_str+'\n')

    def log_value(self, dict):
        for k, v in dict.items():
            self.writer.add_scalar(k, v, self.global_step)
    
    def log_spec(self, name, spec, spec_out, vmin=-14, vmax=3.5):  
        spec_cat = torch.cat([(spec_out - spec).abs() + vmin, spec, spec_out], -1)
        spec = spec_cat[0]
        if isinstance(spec, torch.Tensor):
            spec = spec.cpu().numpy()
        fig = plt.figure(figsize=(12, 9))
        plt.pcolor(spec.T, vmin=vmin, vmax=vmax)
        plt.tight_layout()
        self.writer.add_figure(name, fig, self.global_step)
    
    def log_audio(self, dict):
        for k, v in dict.items():
            self.writer.add_audio(k, v, global_step=self.global_step, sample_rate=self.sample_rate)
    
    def get_interval_time(self, update=True):
        cur_time = time.time()
        time_interval = cur_time - self.last_time
        if update:
            self.last_time = cur_time
        return time_interval

    def get_total_time(self, to_str=True):
        total_time = time.time() - self.init_time
        if to_str:
            total_time = str(datetime.timedelta(
                seconds=total_time))[:-5]
        return total_time

    def save_model(
            self,
            model, 
            optimizer,
            name='model',
            postfix='',
            to_json=False):
        # path
        if postfix:
            postfix = '_' + postfix
        path_pt = os.path.join(
            self.expdir , name+postfix+'.pt')
       
        # check
        print(' [*] model checkpoint saved: {}'.format(path_pt))

        # save
        if optimizer is not None:
            torch.save({
                'global_step': self.global_step,
                'model': model.state_dict(),
                'optimizer': optimizer.state_dict()}, path_pt)
        else:
            torch.save({
                'global_step': self.global_step,
                'model': model.state_dict()}, path_pt)
        
    
    def delete_model(self, name='model', postfix=''):
        # path
        if postfix:
            postfix = '_' + postfix
        path_pt = os.path.join(
            self.expdir , name+postfix+'.pt')
       
        # delete
        if os.path.exists(path_pt):
            os.remove(path_pt)
            print(' [*] model checkpoint deleted: {}'.format(path_pt))
        
    def global_step_increment(self):
        self.global_step += 1