byota / src /demo.py
aittalam's picture
Upload 13 files
7ba9119 verified
import marimo
__generated_with = "0.11.21"
app = marimo.App(width="medium")
@app.cell
def _():
# # Uncomment this code if you want to run the notebook on marimo cloud
# import micropip # type: ignore
# await micropip.install("Mastodon.py")
# await micropip.install("loguru")
return
@app.cell
def _():
import marimo as mo
import pickle
import time
import altair as alt
from sklearn.manifold import TSNE
import pandas as pd
from pathlib import Path
import json
import os
import numpy as np
from byota.embeddings import EmbeddingService, LLamafileEmbeddingService
from byota.search import SearchService
return (
EmbeddingService,
LLamafileEmbeddingService,
Path,
SearchService,
TSNE,
alt,
json,
mo,
np,
os,
pd,
pickle,
time,
)
@app.cell
def _():
# internal variables
# dump files for offline mode
dataframes_data_file = "data/dump_dataframes_demo.pkl"
embeddings_data_file = "data/dump_embeddings_demo.pkl"
user_statuses_data_file = "data/dump_user_statuses_demo.pkl"
return dataframes_data_file, embeddings_data_file, user_statuses_data_file
@app.cell
def _(mo):
mo.md(
"""
# Build Your Own Timeline Algorithm
Welcome to BYOTA's demo!
This small Web application shows some of the things you could do running BYOTA's code on your own timeline.
As this is open for anyone to use, this version of the code does not connect to any real social network, but uses either synthetic data (to simulate posts in the home, local, and public timelines) or posts from [my Mastodon account](http://fosstodon.org/@mala).
If you want to use BYOTA with your own data, feel free to check its [⌨️ code](https://github.com/mozilla-ai/byota)
and [📖 documentation](https://mozilla-ai.github.io/byota/).
So, feel free to just click "submit" in the following Configuration form and... see what happens!
"""
)
return
@app.cell
def _(configuration_form):
configuration_form
return
@app.cell
def _(
LLamafileEmbeddingService,
configuration_form,
dataframes_data_file,
invalid_form,
load_dataframes,
mo,
):
mo.stop(
invalid_form(configuration_form),
mo.md("**Submit the form to continue.**").center(),
)
embedding_service = LLamafileEmbeddingService("http://localhost:8080/embedding")
mo.stop(
not embedding_service.is_working(),
mo.md("**Cannot access embedding server.**"),
)
# choose what to read from cache
cached_embeddings = configuration_form.value["offline_mode"]
dataframes = load_dataframes(dataframes_data_file)
mo.stop(dataframes is None, mo.md("**Issues loading dataframes**"))
return cached_embeddings, dataframes, embedding_service
@app.cell
def _(dataframes, mo):
mo.stop(dataframes is None)
mo.md(f"""
### Calculating embeddings for the downloaded timeline{"s" if len(dataframes.keys())>1 else ""}.
""").center()
return
@app.cell
def _(
build_cache_embeddings,
cached_embeddings,
dataframes,
embedding_service,
embeddings_data_file,
mo,
):
# calculate embeddings
embeddings = build_cache_embeddings(
embedding_service, dataframes, cached_embeddings, embeddings_data_file
)
mo.stop(embeddings is None, mo.md("**Issues calculating embeddings**"))
return (embeddings,)
@app.cell
def _(TSNE, alt, dataframes, embeddings, mo, np, pd):
def tsne(dataframes, embeddings, perplexity, random_state=42):
"""Runs dimensionality reduction using TSNE on the input embeddings.
Returns dataframes containing status id, text, and 2D coordinates
for plotting.
"""
tsne = TSNE(n_components=2, random_state=random_state, perplexity=perplexity)
all_embeddings = np.concatenate([v for v in embeddings.values()])
all_projections = tsne.fit_transform(all_embeddings)
dfs = []
start_idx = 0
end_idx = 0
for kk in embeddings:
end_idx += len(embeddings[kk])
df = dataframes[kk]
df["x"] = all_projections[start_idx:end_idx, 0]
df["y"] = all_projections[start_idx:end_idx, 1]
df["label"] = kk
dfs.append(df)
start_idx = end_idx
return pd.concat(dfs, ignore_index=True), all_embeddings
df_, all_embeddings = tsne(dataframes, embeddings, perplexity=4)
chart = mo.ui.altair_chart(
alt.Chart(df_, title="Timeline Visualization", height=500)
.mark_point()
.encode(x="x", y="y", color="label")
)
return all_embeddings, chart, df_, tsne
@app.cell
def _(chart, mo):
mo.vstack(
[
mo.md("# Embeddings visualization").center(),
mo.md("""
In this section, you can see posts from different timelines represented as points on a plane:
You can click on a timeline label on the top right to highlight only posts from that timeline.
If you select one or more points, you will see them in the table below the plot.
By clicking on the column names (e.g. `label`, `text`) you can sort them, wrap text (to see full
post contents), or search their content.
"""),
chart,
chart.value[["id", "label", "text"]]
if len(chart.value) > 0
else chart.value,
]
)
return
@app.cell
def _(embeddings, mo, query_form):
mo.stop(embeddings is None)
mo.vstack(
[
mo.md("# Timeline search"),
mo.md("""
Here you can search for the most similar posts to a given one.
You can either provide a row id (the leftmost column in the previous table) to refer to an existing post,
or freeform text to look for posts which are similar in content to what you wrote. Some examples:
- Book suggestions for scifi lovers
- Digital rights and free software
- Recipes for vegetarians (warning: sadly you won't get recipes from this dataset!)
- I like retrocomputing but also bouldering, now what?
"""),
query_form,
]
)
return
@app.cell
def _(SearchService, all_embeddings, df_, embedding_service, query_form):
search_service = SearchService(all_embeddings, embedding_service)
indices = search_service.most_similar_indices(query_form.value)
df_.iloc[indices][["label", "text"]]
return indices, search_service
@app.cell
def _(embeddings, mo, rerank_form):
mo.stop(embeddings is None)
mo.vstack(
[
mo.md("# Timeline Re-ranking"),
mo.md("""
In the previous sections, you saw that embeddings are reasonable descriptors for social media posts,
as they allow semantic similar statuses to be close in the embedding space. This allows you to use
the simple concept of *distance between points* to group statuses and search them.
In this section, you will perform actual timeline re-ranking. To do this, you'll still rely on the
concept of text similarity, assigning a higher score to those posts which are most similar to *a set
of other posts*. The set you'll use as a reference is the one of the posts you wrote or
reposted from others.
**NOTE**: For the sake of this open demo, the posts are not the ones *you* wrote, but I provided a subset of
those posted by https://fosstodon.org/@mala (that's me!). This way, you can get a better sense of
how this would work with some real data rather than a fully synthetic dataset.
"""),
rerank_form,
]
)
return
@app.cell
def _(
dataframes,
embedding_service,
embeddings,
load_dataframes,
mo,
np,
rerank_form,
time,
user_statuses_data_file,
):
mo.stop(embeddings is None)
# check for anything invalid in the form
mo.stop(rerank_form.value is None, mo.md("**Submit the form to continue.**"))
timeline_to_rerank = rerank_form.value["timeline_to_rerank"]
user_statuses_df = load_dataframes(user_statuses_data_file)[
: 20 * rerank_form.value["num_user_status_pages"]
]
mo.stop(user_statuses_df is None, mo.md("**Issues loading dataframes**"))
user_statuses_embeddings = embedding_service.calculate_embeddings(
user_statuses_df["text"]
)
# build an index of most similar statuses to the ones
# published / boosted by the user
rerank_start_time = time.time()
# index is in reverse order (from largest to smallest similarity)
idx = np.flip(
# return indices of the sorted list, instead of values
# we want to get pointers to statuses, not actual similarities
np.argsort(
# to measure how much I might like a timeline status,
# I sum all the similarity values calculated between
# that status and all the statuses in my feed
np.sum(
# dot product is a decent quick'n'dirty way to calculate
# similarity between two vectors (the more similar they
# are, the larger the product)
np.dot(user_statuses_embeddings, embeddings[timeline_to_rerank].T),
axis=0,
)
)
)
print(time.time() - rerank_start_time)
# show everything
mo.vstack(
[
mo.md("""## Your statuses:
This table shows the content of the posts that are used for re-ranking the timeline. You can change
their number in the form above (1 page = 20 posts), check them out here, and verify in the table below
this one how ranking changes depending on the contents you include.
"""),
user_statuses_df,
mo.md("""## Your re-ranked timeline:
This table shows posts from the synthetic timelines (you can choose between home, local, and public
in the form above), re-ranked to prioritize the main topics inferred from the posts in the previous table.
"""),
# show statuses sorted by idx
dataframes[timeline_to_rerank].iloc[idx][["label", "text"]],
]
)
return (
idx,
rerank_start_time,
timeline_to_rerank,
user_statuses_df,
user_statuses_embeddings,
)
@app.cell
def _():
# # Wanna get some intuition re: the similarity measure?
# # Here's a simple example: the seven values you get are
# # the scores for the seven vectors in bbb (the higher
# # they are, the more similar vectors they have in aaa).
# # ... Can you tell why the third vector in bbb ([1,1,0,0])
# # is the most similar to vectors found in aaa?
# aaa = np.array([
# [1,0,0,0],
# [0,1,0,0],
# [0,0,1,0],
# [1,1,0,0],
# ]).astype(np.float32)
# bbb = np.array([
# [1,0,0,0],
# [0,1,0,0],
# [1,1,0,0],
# [0,0,1,0],
# [0,1,1,0],
# [0,0,0,1],
# [0,0,1,1],
# ]).astype(np.float32)
# np.sum(np.dot(aaa, bbb.T), axis=0)
return
@app.cell
def _(mo, rerank_form, tag_form):
mo.stop(rerank_form.value is None)
mo.vstack(
[
mo.md("""
# Re-Ranking your own posts
Depending on the timeline you are considering, it might be more or less hard
to understand how well the re-ranking worked.
To give you a better sense of the effect of re-ranking, let us take the posts
you wrote and re-rank them according to some well-known tag.
Feel free to test the following code with different tags, depending on your
various interests, and see whether your own posts related to a given interest
are surfaced by a related tag.
**NOTE: a couple of changes have been applied for the sake of having a functional demo:**
1. Posts are not actually your own (see above).
2. The word(s) that you enter below will be used to filter the existing posts in the
(synthetic) public timeline, rather than running a new tag search on the mastodon server.
This allows you to still get meaningful posts back without having to connect to an instance.
Some example search terms you could use: `#AI`, `bouldering`, `books`, `scifi`, `retrogaming`, `movies`.
If a search term is not found, you will simply see no results.
"""),
tag_form,
]
)
return
@app.cell
def _(
dataframes,
embedding_service,
mo,
np,
tag_form,
user_statuses_df,
user_statuses_embeddings,
):
tag_name = tag_form.value
tag_posts_df = dataframes["public"][
dataframes["public"]["text"].str.contains(tag_name)
]
tag_posts_embeddings = embedding_service.calculate_embeddings(tag_posts_df["text"])
# calculate the re-ranking index
my_idx = np.flip(
np.argsort(
np.sum(np.dot(tag_posts_embeddings, user_statuses_embeddings.T), axis=0)
)
)
# let us also show the similarity scores used to calculate the index
user_statuses_df["scores"] = np.sum(
np.dot(tag_posts_embeddings, user_statuses_embeddings.T), axis=0
)
mo.vstack(
[
mo.md(
f"### Your own posts, re-ranked according to their similarity to posts in {tag_name}"
),
user_statuses_df.iloc[my_idx][["text", "scores"]],
]
)
# my_posts_df[['text', 'scores']]
return my_idx, tag_name, tag_posts_df, tag_posts_embeddings
@app.cell
def _(mo):
# Create the Configuration form
configuration_form = (
mo.md(
"""
# Configuration
(NOTE: settings will be ignored in this demo, data will be loaded from a file)
**Timelines**
{tl_home} {tl_local} {tl_public}
{tl_hashtag} {tl_hashtag_txt} {tl_list} {tl_list_txt}
**Embeddings**
{emb_server}
{emb_server_url}
{emb_server_model}
**Caching**
{offline_mode}
"""
)
.batch(
tl_home=mo.ui.checkbox(label="Home", value=True),
tl_local=mo.ui.checkbox(label="Local", value=True),
tl_public=mo.ui.checkbox(label="Public", value=True),
tl_hashtag=mo.ui.checkbox(label="Hashtag"),
tl_list=mo.ui.checkbox(label="List"),
tl_hashtag_txt=mo.ui.text(),
tl_list_txt=mo.ui.text(),
emb_server=mo.ui.radio(
label="Server type:",
options=["llamafile", "ollama"],
value="llamafile",
inline=True,
),
emb_server_url=mo.ui.text(
label="Embedding server URL:",
value="http://localhost:8080/embedding",
full_width=True,
),
emb_server_model=mo.ui.text(
label="Embedding server model:", value="all-minilm"
),
offline_mode=mo.ui.checkbox(label="Run in offline mode (experimental)"),
)
.form(show_clear_button=True, bordered=True)
)
# a dictionary mapping Timeline UI checkboxes with the respective
# strings that identify them in the Mastodon API
timelines_dict = {
"tl_home": "home",
"tl_local": "local",
"tl_public": "public",
"tl_hashtag": "tag",
"tl_list": "list",
}
def invalid_form(form):
"""A form (e.g. login) is invalid if it has no value,
or if any of its keys have no value."""
if form.value is None:
return True
for k in form.value.keys():
if form.value[k] is None:
return True
return False
return configuration_form, invalid_form, timelines_dict
@app.cell
def _(mo):
# Create a form for timeline re-ranking
rerank_form = (
mo.md(
"""
# Re-ranking settings
**User statuses** (NOTE: data will be loaded from a file)
{num_user_status_pages} {exclude_reblogs}
**Timeline to rerank**
{timeline_to_rerank}
"""
)
.batch(
num_user_status_pages=mo.ui.slider(
start=1, stop=20, label="Number of pages to load", value=1
),
timeline_to_rerank=mo.ui.radio(
options=["home", "local", "public"], value="public"
),
exclude_reblogs=mo.ui.checkbox(label="Exclude reblogs", value=True),
)
.form(show_clear_button=True, bordered=True)
)
return (rerank_form,)
@app.cell
def _(mo):
query_form = mo.ui.text(
value="42",
label="Enter a status id or some free-form text to find the most similar statuses:\n",
full_width=True,
)
return (query_form,)
@app.cell
def _(mo):
tag_form = mo.ui.text(
value="retrogaming",
label="Enter a tag name:\n",
)
return (tag_form,)
@app.cell
def _(BeautifulSoup, EmbeddingService, mo, pickle, time):
def load_dataframes(data_file):
dataframes = None
print(f"Loading cached dataframes from {data_file}")
try:
with open(data_file, "rb") as f:
dataframes = pickle.load(f)
except FileNotFoundError:
print(f"File {data_file} not found.")
return dataframes
def build_cache_embeddings(
embedding_service: EmbeddingService, # type: ignore
dataframes: dict[str, any],
cached: bool,
embeddings_data_file: str,
) -> dict[str, any]:
"""Given a dictionary with dataframes from different timelines,
return another dictionary that contains, for each timeline, the
respective embeddings calculated with the provided embedding service.
If cached==True, the `embeddings_data_file` file will be loaded.
"""
if not cached:
embeddings = {}
for k in dataframes:
with mo.status.progress_bar(
total=len(dataframes[k]), title=f"Embedding posts from: {k}"
) as bar:
print(f"Embedding statuses from timeline: {k}")
tt_ = time.time()
embeddings[k] = embedding_service.calculate_embeddings(
dataframes[k]["text"], bar
)
print(time.time() - tt_)
with open(embeddings_data_file, "wb") as f:
pickle.dump(embeddings, f)
else:
print(f"Loading cached embeddings from {embeddings_data_file}")
try:
with open(embeddings_data_file, "rb") as f:
embeddings = pickle.load(f)
except FileNotFoundError:
print(f"File {embeddings_data_file} not found.")
return None
return embeddings
def get_compact_data(paginated_data: list) -> list[tuple[int, str]]:
"""Extract compact (id, text) pairs from a paginated list of statuses."""
compact_data = []
for page in paginated_data:
for toot in page:
id = toot.id
cont = toot.content
if toot.reblog:
id = toot.reblog.id
cont = toot.reblog.content
soup = BeautifulSoup(cont, features="html.parser")
# print(f"{id}: {soup.get_text()}")
compact_data.append((id, soup.get_text()))
return compact_data
return build_cache_embeddings, get_compact_data, load_dataframes
@app.cell
def _():
return
if __name__ == "__main__":
app.run()