Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,033 Bytes
ff71374 8bbb796 bdc2933 8bbb796 ff71374 8bbb796 5e6ab01 bdc2933 8bbb796 bdc2933 5e6ab01 bdc2933 5e6ab01 bdc2933 5e6ab01 bdc2933 c318bd7 bdc2933 5e6ab01 bdc2933 5e6ab01 bdc2933 5e6ab01 bdc2933 5e6ab01 bdc2933 8bbb796 bdc2933 5d20e7d bdc2933 8bbb796 bdc2933 8bbb796 bdc2933 5e6ab01 ff71374 5e6ab01 8bbb796 b669864 8bbb796 bdc2933 8bbb796 f466d22 8bbb796 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
import os
import gradio as gr
import spaces
from transformers import pipeline, Pipeline
is_hf_space = os.getenv("IS_HF_SPACE")
model_ids = [
"",
"mozilla-ai/whisper-small-gl (Galician)",
"mozilla-ai/whisper-small-el (Greek)",
"openai/whisper-tiny (Multilingual)",
"openai/whisper-small (Multilingual)",
"openai/whisper-medium (Multilingual)",
"openai/whisper-large-v3 (Multilingual)",
"openai/whisper-large-v3-turbo (Multilingual)",
]
def _load_local_model(model_dir: str) -> Pipeline:
from transformers import (
WhisperProcessor,
WhisperTokenizer,
WhisperFeatureExtractor,
WhisperForConditionalGeneration,
)
processor = WhisperProcessor.from_pretrained(model_dir)
tokenizer = WhisperTokenizer.from_pretrained(model_dir, task="transcribe")
feature_extractor = WhisperFeatureExtractor.from_pretrained(model_dir)
model = WhisperForConditionalGeneration.from_pretrained(model_dir)
try:
return pipeline(
task="automatic-speech-recognition",
model=model,
processor=processor,
tokenizer=tokenizer,
feature_extractor=feature_extractor,
)
except Exception as e:
return str(e)
def _load_hf_model(model_repo_id: str) -> Pipeline:
try:
return pipeline(
"automatic-speech-recognition",
model=model_repo_id,
)
except Exception as e:
return str(e)
@spaces.GPU(duration=30)
def transcribe(
dropdown_model_id: str,
hf_model_id: str,
local_model_id: str,
audio: gr.Audio,
) -> str:
if dropdown_model_id and not hf_model_id and not local_model_id:
dropdown_model_id = dropdown_model_id.split(" (")[0]
pipe = _load_hf_model(dropdown_model_id)
elif hf_model_id and not local_model_id and not dropdown_model_id:
pipe = _load_hf_model(hf_model_id)
elif local_model_id and not hf_model_id and not dropdown_model_id:
pipe = _load_local_model(local_model_id)
else:
return (
"⚠️ Error: Please select or fill at least and only one of the options above"
)
if isinstance(pipe, str):
# Exception raised when loading
return f"⚠️ Error: {pipe}"
text = pipe(audio)["text"]
return text
def setup_gradio_demo():
with gr.Blocks() as demo:
gr.Markdown(
""" # 🗣️ Speech-to-Text Transcription
### 1. Select which model to use from one of the options below.
### 2. Record a message or upload an audio file.
### 3. Click Transcribe to see the transcription generated by the model.
"""
)
### Model selection ###
with gr.Row():
with gr.Column():
dropdown_model = gr.Dropdown(
choices=model_ids, label="Option 1: Select a model"
)
with gr.Column():
user_model = gr.Textbox(
label="Option 2: Paste HF model id",
placeholder="my-username/my-whisper-tiny",
)
with gr.Column(visible=not is_hf_space):
local_model = gr.Textbox(
label="Option 3: Paste local path to model directory",
placeholder="artifacts/my-whisper-tiny",
)
### Transcription ###
audio_input = gr.Audio(
sources=["microphone", "upload"],
type="filepath",
label="Record a message / Upload audio file",
show_download_button=True,
max_length=30,
)
transcribe_button = gr.Button("Transcribe")
transcribe_output = gr.Text(label="Output")
transcribe_button.click(
fn=transcribe,
inputs=[dropdown_model, user_model, local_model, audio_input],
outputs=transcribe_output,
)
demo.launch(ssr_mode=False)
if __name__ == "__main__":
setup_gradio_demo()
|