File size: 3,431 Bytes
52c57e0
 
 
 
 
 
9c725ef
 
 
52c57e0
f1eda89
 
52c57e0
 
 
 
4093517
 
d6f6a75
52c57e0
a3a5528
 
0453cbe
3f72c9d
 
a3a5528
0326abd
 
a3a5528
 
 
 
9b8edeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
808fea7
96db0e7
9b8edeb
 
f88cfb3
670eda8
a0b35de
 
 
 
 
 
 
 
 
670eda8
f88cfb3
 
a3a5528
7dfc92a
a3a5528
3ba1c73
a3a5528
4d31291
0f12594
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import torch
import numpy as np
from transformers import LayoutLMv3TokenizerFast, LayoutLMv3Processor, LayoutLMv3ForTokenClassification
from PIL import Image, ImageDraw, ImageFont
from utils import OCR, unnormalize_box

tokenizer = LayoutLMv3TokenizerFast.from_pretrained("mp-02/layoutlmv3-base-cord-sroie", apply_ocr=False)
processor = LayoutLMv3Processor.from_pretrained("mp-02/layoutlmv3-base-cord-sroie", apply_ocr=False)
model = LayoutLMv3ForTokenClassification.from_pretrained("mp-02/layoutlmv3-base-cord-sroie")

id2label = model.config.id2label
label2id = model.config.label2id

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)

import json

def prediction(image):

    boxes, words = OCR(image)
    # Preprocessa l'immagine e il testo con il processore di LayoutLMv3
    encoding = processor(image, words, boxes=boxes, return_offsets_mapping=True, return_tensors="pt", truncation=True)
    offset_mapping = encoding.pop('offset_mapping')

    # Esegui l'inferenza con il modello fine-tuned
    outputs = model(**encoding)

    predictions = outputs.logits.argmax(-1).squeeze().tolist()
    token_boxes = encoding.bbox.squeeze().tolist()
    probabilities = torch.softmax(outputs.logits, dim=-1)
    confidence_scores = probabilities.max(-1).values.squeeze().tolist()

    inp_ids = encoding.input_ids.squeeze().tolist()
    inp_words = [tokenizer.decode(i) for i in inp_ids]

    width, height = image.size
    is_subword = np.array(offset_mapping.squeeze().tolist())[:, 0] != 0

    true_predictions = [id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]]
    true_boxes = [unnormalize_box(box, width, height) for idx, box in enumerate(token_boxes) if not is_subword[idx]]
    true_confidence_scores = [confidence_scores[idx] for idx, conf in enumerate(confidence_scores) if not is_subword[idx]]
    true_words = []

    for id, i in enumerate(inp_words):
        if not is_subword[id]:
            true_words.append(i)
        else:
            true_words[-1] = true_words[-1]+i

    true_predictions = true_predictions[1:-1]
    true_boxes = true_boxes[1:-1]
    true_words = true_words[1:-1]
    true_confidence_scores = true_confidence_scores[1:-1]

    d = {}
    for id, i in enumerate(true_predictions):
        #rimuovo i prefissi
        if i != "O":
            i = i[2:]
        if i not in d.keys():
            d[i] = true_words[id]
        else:
            d[i] = d[i] + ", " + true_words[id]
    
    d = {k: v.strip() for (k, v) in d.items()}

    if "O" in d: d.pop("O")

    if("MENU.NM" in d and "MENU.PRICE" in d):
        if(len(d["MENU.NM"].split(", ")) == len(d["MENU.PRICE"].split(", "))):
            menu_names = [name.strip() for name in d["MENU.NM"].split(', ')]
            menu_prices = [price.strip() for price in d["MENU.PRICE"].split(', ')]
    
            menu_combined = [{"ITEM": name, "PRICE": price} for name, price in zip(menu_names, menu_prices)]
    
            d.pop("MENU.NM")
            d.pop("MENU.PRICE")
            d["MENU"] = menu_combined

    draw = ImageDraw.Draw(image, "RGBA")
    font = ImageFont.load_default()
    
    for prediction, box, confidence in zip(true_predictions, true_boxes, true_confidence_scores):
            draw.rectangle(box)
            draw.text((box[0]+10, box[1]-10), text=str(prediction)+ ", "+ str(confidence), font=font, fill="black", font_size="15")
    
    return d