Spaces:
Sleeping
Sleeping
File size: 3,041 Bytes
52c57e0 9c725ef 52c57e0 f1eda89 52c57e0 4093517 d6f6a75 52c57e0 a3a5528 0453cbe 3f72c9d a3a5528 0326abd a3a5528 9b8edeb f2fefda 9b8edeb f88cfb3 a3a5528 7dfc92a a3a5528 3ba1c73 a3a5528 9b8edeb 0f12594 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
import torch
import numpy as np
from transformers import LayoutLMv3TokenizerFast, LayoutLMv3Processor, LayoutLMv3ForTokenClassification
from PIL import Image, ImageDraw, ImageFont
from utils import OCR, unnormalize_box
tokenizer = LayoutLMv3TokenizerFast.from_pretrained("mp-02/layoutlmv3-base-cord-sroie", apply_ocr=False)
processor = LayoutLMv3Processor.from_pretrained("mp-02/layoutlmv3-base-cord-sroie", apply_ocr=False)
model = LayoutLMv3ForTokenClassification.from_pretrained("mp-02/layoutlmv3-base-cord-sroie")
id2label = model.config.id2label
label2id = model.config.label2id
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
import json
def prediction(image):
boxes, words = OCR(image)
# Preprocessa l'immagine e il testo con il processore di LayoutLMv3
encoding = processor(image, words, boxes=boxes, return_offsets_mapping=True, return_tensors="pt", truncation=True)
offset_mapping = encoding.pop('offset_mapping')
# Esegui l'inferenza con il modello fine-tuned
outputs = model(**encoding)
predictions = outputs.logits.argmax(-1).squeeze().tolist()
token_boxes = encoding.bbox.squeeze().tolist()
probabilities = torch.softmax(outputs.logits, dim=-1)
confidence_scores = probabilities.max(-1).values.squeeze().tolist()
inp_ids = encoding.input_ids.squeeze().tolist()
inp_words = [tokenizer.decode(i) for i in inp_ids]
width, height = image.size
is_subword = np.array(offset_mapping.squeeze().tolist())[:, 0] != 0
true_predictions = [id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]]
true_boxes = [unnormalize_box(box, width, height) for idx, box in enumerate(token_boxes) if not is_subword[idx]]
true_confidence_scores = [confidence_scores[idx] for idx, conf in enumerate(confidence_scores) if not is_subword[idx]]
true_words = []
for id, i in enumerate(inp_words):
if not is_subword[id]:
true_words.append(i)
else:
true_words[-1] = true_words[-1]+i
true_predictions = true_predictions[1:-1]
true_boxes = true_boxes[1:-1]
true_words = true_words[1:-1]
true_confidence_scores = true_confidence_scores[1:-1]
for i, j in enumerate(true_confidence_scores):
if j < 0.5:
true_predictions[i] = "O"
d = {}
for id, i in enumerate(true_predictions):
#rimuovo i prefissi
if i != "O":
i = i[2:]
if i not in d.keys():
d[i] = true_words[id]
else:
d[i] = d[i] + ", " + true_words[id]
d = {k: v.strip() for (k, v) in d.items()}
if "O" in d: d.pop("O")
draw = ImageDraw.Draw(image, "RGBA")
font = ImageFont.load_default()
for prediction, box, confidence in zip(true_predictions, true_boxes, true_confidence_scores):
draw.rectangle(box)
draw.text((box[0]+10, box[1]-10), text=str(prediction)+ ", "+ str(confidence), font=font, fill="black", font_size="15")
return image, d
|