LayoutLMv3_for_recepits2 / inference.py
mp-02's picture
Update inference.py
4d31291 verified
raw
history blame
3.43 kB
import torch
import numpy as np
from transformers import LayoutLMv3TokenizerFast, LayoutLMv3Processor, LayoutLMv3ForTokenClassification
from PIL import Image, ImageDraw, ImageFont
from utils import OCR, unnormalize_box
tokenizer = LayoutLMv3TokenizerFast.from_pretrained("mp-02/layoutlmv3-base-cord-sroie", apply_ocr=False)
processor = LayoutLMv3Processor.from_pretrained("mp-02/layoutlmv3-base-cord-sroie", apply_ocr=False)
model = LayoutLMv3ForTokenClassification.from_pretrained("mp-02/layoutlmv3-base-cord-sroie")
id2label = model.config.id2label
label2id = model.config.label2id
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
import json
def prediction(image):
boxes, words = OCR(image)
# Preprocessa l'immagine e il testo con il processore di LayoutLMv3
encoding = processor(image, words, boxes=boxes, return_offsets_mapping=True, return_tensors="pt", truncation=True)
offset_mapping = encoding.pop('offset_mapping')
# Esegui l'inferenza con il modello fine-tuned
outputs = model(**encoding)
predictions = outputs.logits.argmax(-1).squeeze().tolist()
token_boxes = encoding.bbox.squeeze().tolist()
probabilities = torch.softmax(outputs.logits, dim=-1)
confidence_scores = probabilities.max(-1).values.squeeze().tolist()
inp_ids = encoding.input_ids.squeeze().tolist()
inp_words = [tokenizer.decode(i) for i in inp_ids]
width, height = image.size
is_subword = np.array(offset_mapping.squeeze().tolist())[:, 0] != 0
true_predictions = [id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]]
true_boxes = [unnormalize_box(box, width, height) for idx, box in enumerate(token_boxes) if not is_subword[idx]]
true_confidence_scores = [confidence_scores[idx] for idx, conf in enumerate(confidence_scores) if not is_subword[idx]]
true_words = []
for id, i in enumerate(inp_words):
if not is_subword[id]:
true_words.append(i)
else:
true_words[-1] = true_words[-1]+i
true_predictions = true_predictions[1:-1]
true_boxes = true_boxes[1:-1]
true_words = true_words[1:-1]
true_confidence_scores = true_confidence_scores[1:-1]
d = {}
for id, i in enumerate(true_predictions):
#rimuovo i prefissi
if i != "O":
i = i[2:]
if i not in d.keys():
d[i] = true_words[id]
else:
d[i] = d[i] + ", " + true_words[id]
d = {k: v.strip() for (k, v) in d.items()}
if "O" in d: d.pop("O")
if("MENU.NM" in d and "MENU.PRICE" in d):
if(len(d["MENU.NM"].split(", ")) == len(d["MENU.PRICE"].split(", "))):
menu_names = [name.strip() for name in d["MENU.NM"].split(', ')]
menu_prices = [price.strip() for price in d["MENU.PRICE"].split(', ')]
menu_combined = [{"ITEM": name, "PRICE": price} for name, price in zip(menu_names, menu_prices)]
d.pop("MENU.NM")
d.pop("MENU.PRICE")
d["MENU"] = menu_combined
draw = ImageDraw.Draw(image, "RGBA")
font = ImageFont.load_default()
for prediction, box, confidence in zip(true_predictions, true_boxes, true_confidence_scores):
draw.rectangle(box)
draw.text((box[0]+10, box[1]-10), text=str(prediction)+ ", "+ str(confidence), font=font, fill="black", font_size="15")
return d