I2I / app.py
mrbeliever's picture
Update app.py
48d37f2 verified
import spaces
import gradio as gr
import re
from PIL import Image
import os
import numpy as np
import torch
from diffusers import FluxImg2ImgPipeline
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = FluxImg2ImgPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(device)
def sanitize_prompt(prompt):
allowed_chars = re.compile(r"[^a-zA-Z0-9\s.,!?-]")
sanitized_prompt = allowed_chars.sub("", prompt)
return sanitized_prompt
def convert_to_fit_size(original_width_and_height, maximum_size=2048):
width, height = original_width_and_height
if width <= maximum_size and height <= maximum_size:
return width, height
scaling_factor = maximum_size / max(width, height)
new_width = int(width * scaling_factor)
new_height = int(height * scaling_factor)
return new_width, new_height
def adjust_to_multiple_of_32(width: int, height: int):
width = width - (width % 32)
height = height - (height % 32)
return width, height
@spaces.GPU(duration=120)
def process_images(image, prompt="a girl", strength=0.75, seed=0, inference_step=4, progress=gr.Progress(track_tqdm=True)):
progress(0, desc="Starting")
if image is None or not hasattr(image, 'size'):
raise gr.Error("Please upload an image.")
def process_img2img(image, prompt="a person", strength=0.75, seed=0, num_inference_steps=4):
generator = torch.Generator(device).manual_seed(seed)
width, height = convert_to_fit_size(image.size)
width, height = adjust_to_multiple_of_32(width, height)
image = image.resize((width, height), Image.LANCZOS)
output = pipe(prompt=prompt, image=image, generator=generator, strength=strength, width=width, height=height, guidance_scale=0, num_inference_steps=num_inference_steps, max_sequence_length=256)
return output.images[0]
output = process_img2img(image, prompt, strength, seed, inference_step)
return output
def read_file(path: str) -> str:
with open(path, 'r', encoding='utf-8') as f:
content = f.read()
return content
css = """
#demo-container {
border: 4px solid black;
border-radius: 8px;
padding: 20px;
margin: 20px auto;
max-width: 800px;
}
#image_upload, #output-img {
border: 4px solid black;
border-radius: 8px;
width: 256px;
height: 256px;
object-fit: cover;
}
#run_button {
font-weight: bold;
border: 4px solid black;
border-radius: 8px;
padding: 10px 20px;
width: 100%
}
#col-left, #col-right {
max-width: 640px;
margin: 0 auto;
}
.grid-container {
display: flex;
align-items: center;
justify-content: center;
gap: 10px;
}
.text {
font-size: 16px;
}
"""
with gr.Blocks(css=css, elem_id="demo-container") as demo:
with gr.Column():
gr.HTML(read_file("demo_header.html"))
# Removed or commented out the demo_tools.html line
# gr.HTML(read_file("demo_tools.html"))
with gr.Row():
with gr.Column():
image = gr.Image(width=256, height=256, sources=['upload', 'clipboard'], image_mode='RGB', elem_id="image_upload", type="pil", label="Upload")
prompt = gr.Textbox(label="Prompt", value="", placeholder="Your prompt", elem_id="prompt")
btn = gr.Button("Generate", elem_id="run_button", variant="primary")
with gr.Accordion(label="Advanced Settings", open=False):
strength = gr.Number(value=0.75, minimum=0, maximum=0.75, step=0.01, label="Strength")
seed = gr.Number(value=100, minimum=0, step=1, label="Seed")
inference_step = gr.Number(value=4, minimum=1, step=4, label="Inference Steps")
with gr.Column():
image_out = gr.Image(width=256, height=256, label="Output", elem_id="output-img", format="jpg")
gr.HTML(gr.HTML(read_file("demo_footer.html")))
gr.on(
triggers=[btn.click, prompt.submit],
fn=process_images,
inputs=[image, prompt, strength, seed, inference_step],
outputs=[image_out]
)
if __name__ == "__main__":
demo.queue().launch(show_error=True)