# 1. Import the required packages | |
import torch | |
import gradio as gr | |
from typing import Dict | |
from transformers import pipeline | |
# 2. Define our function to use with our model. | |
def food_not_food_classifier(text: str) -> Dict[str, float]: | |
# 2. Setup food not food text classifier | |
food_not_food_classifier_pipeline = pipeline(task="text-classification", | |
model="mrdbourke/learn_hf_food_not_food_text_classifier-distilbert-base-uncased", | |
batch_size=32, | |
device="cuda" if torch.cuda.is_available() else "cpu", | |
top_k=None) # top_k=None => return all possible labels | |
# 3. Get the outputs from our pipeline | |
outputs = food_not_food_classifier_pipeline(text)[0] | |
# 4. Format output for Gradio | |
output_dict = {} | |
for item in outputs: | |
output_dict[item["label"]] = item["score"] | |
return output_dict | |
# 3. Create a Gradio interface | |
description = """ | |
A text classifier to determine if a sentence is about food or not food. | |
Fine-tuned from [DistilBERT](https://huggingface.co/distilbert/distilbert-base-uncased) a [dataset of LLM generated food/not_food image captions](https://huggingface.co/datasets/mrdbourke/learn_hf_food_not_food_image_captions). | |
See [source code](https://github.com/mrdbourke/learn-huggingface/blob/main/notebooks/hugging_face_text_classification_tutorial.ipynb). | |
""" | |
demo = gr.Interface( | |
fn=food_not_food_classifier, | |
inputs="text", | |
outputs=gr.Label(num_top_classes=2), | |
title="ππ«π₯ Food or Not Food Text Classifier", | |
description=description, | |
examples=[["I whipped up a fresh batch of code, but it to seems to have a syntax error"], | |
["A plate of pancakes and strawberry icing"]] | |
) | |
# 4. Launch the interface | |
if __name__ == "__main__": | |
demo.launch() | |