mrfakename's picture
Sync from GitHub repo
5f7ec69 verified
import random
import sys
from importlib.resources import files
import soundfile as sf
import tqdm
from cached_path import cached_path
from hydra.utils import get_class
from omegaconf import OmegaConf
from f5_tts.infer.utils_infer import (
load_model,
load_vocoder,
transcribe,
preprocess_ref_audio_text,
infer_process,
remove_silence_for_generated_wav,
save_spectrogram,
)
from f5_tts.model.utils import seed_everything
class F5TTS:
def __init__(
self,
model="F5TTS_v1_Base",
ckpt_file="",
vocab_file="",
ode_method="euler",
use_ema=True,
vocoder_local_path=None,
device=None,
hf_cache_dir=None,
):
model_cfg = OmegaConf.load(str(files("f5_tts").joinpath(f"configs/{model}.yaml")))
model_cls = get_class(f"f5_tts.model.{model_cfg.model.backbone}")
model_arc = model_cfg.model.arch
self.mel_spec_type = model_cfg.model.mel_spec.mel_spec_type
self.target_sample_rate = model_cfg.model.mel_spec.target_sample_rate
self.ode_method = ode_method
self.use_ema = use_ema
if device is not None:
self.device = device
else:
import torch
self.device = (
"cuda"
if torch.cuda.is_available()
else "xpu"
if torch.xpu.is_available()
else "mps"
if torch.backends.mps.is_available()
else "cpu"
)
# Load models
self.vocoder = load_vocoder(
self.mel_spec_type, vocoder_local_path is not None, vocoder_local_path, self.device, hf_cache_dir
)
repo_name, ckpt_step, ckpt_type = "F5-TTS", 1250000, "safetensors"
# override for previous models
if model == "F5TTS_Base":
if self.mel_spec_type == "vocos":
ckpt_step = 1200000
elif self.mel_spec_type == "bigvgan":
model = "F5TTS_Base_bigvgan"
ckpt_type = "pt"
elif model == "E2TTS_Base":
repo_name = "E2-TTS"
ckpt_step = 1200000
if not ckpt_file:
ckpt_file = str(
cached_path(f"hf://SWivid/{repo_name}/{model}/model_{ckpt_step}.{ckpt_type}", cache_dir=hf_cache_dir)
)
self.ema_model = load_model(
model_cls, model_arc, ckpt_file, self.mel_spec_type, vocab_file, self.ode_method, self.use_ema, self.device
)
def transcribe(self, ref_audio, language=None):
return transcribe(ref_audio, language)
def export_wav(self, wav, file_wave, remove_silence=False):
sf.write(file_wave, wav, self.target_sample_rate)
if remove_silence:
remove_silence_for_generated_wav(file_wave)
def export_spectrogram(self, spec, file_spec):
save_spectrogram(spec, file_spec)
def infer(
self,
ref_file,
ref_text,
gen_text,
show_info=print,
progress=tqdm,
target_rms=0.1,
cross_fade_duration=0.15,
sway_sampling_coef=-1,
cfg_strength=2,
nfe_step=32,
speed=1.0,
fix_duration=None,
remove_silence=False,
file_wave=None,
file_spec=None,
seed=None,
):
if seed is None:
seed = random.randint(0, sys.maxsize)
seed_everything(seed)
self.seed = seed
ref_file, ref_text = preprocess_ref_audio_text(ref_file, ref_text)
wav, sr, spec = infer_process(
ref_file,
ref_text,
gen_text,
self.ema_model,
self.vocoder,
self.mel_spec_type,
show_info=show_info,
progress=progress,
target_rms=target_rms,
cross_fade_duration=cross_fade_duration,
nfe_step=nfe_step,
cfg_strength=cfg_strength,
sway_sampling_coef=sway_sampling_coef,
speed=speed,
fix_duration=fix_duration,
device=self.device,
)
if file_wave is not None:
self.export_wav(wav, file_wave, remove_silence)
if file_spec is not None:
self.export_spectrogram(spec, file_spec)
return wav, sr, spec
if __name__ == "__main__":
f5tts = F5TTS()
wav, sr, spec = f5tts.infer(
ref_file=str(files("f5_tts").joinpath("infer/examples/basic/basic_ref_en.wav")),
ref_text="some call me nature, others call me mother nature.",
gen_text="""I don't really care what you call me. I've been a silent spectator, watching species evolve, empires rise and fall. But always remember, I am mighty and enduring. Respect me and I'll nurture you; ignore me and you shall face the consequences.""",
file_wave=str(files("f5_tts").joinpath("../../tests/api_out.wav")),
file_spec=str(files("f5_tts").joinpath("../../tests/api_out.png")),
seed=None,
)
print("seed :", f5tts.seed)