Spaces:
Running
on
Zero
Running
on
Zero
import argparse | |
import json | |
from pathlib import Path | |
import librosa | |
import torch | |
from tqdm import tqdm | |
def main(): | |
parser = argparse.ArgumentParser(description="UTMOS Evaluation") | |
parser.add_argument("--audio_dir", type=str, required=True, help="Audio file path.") | |
parser.add_argument("--ext", type=str, default="wav", help="Audio extension.") | |
args = parser.parse_args() | |
device = "cuda" if torch.cuda.is_available() else "xpu" if torch.xpu.is_available() else "cpu" | |
predictor = torch.hub.load("tarepan/SpeechMOS:v1.2.0", "utmos22_strong", trust_repo=True) | |
predictor = predictor.to(device) | |
audio_paths = list(Path(args.audio_dir).rglob(f"*.{args.ext}")) | |
utmos_score = 0 | |
utmos_result_path = Path(args.audio_dir) / "_utmos_results.jsonl" | |
with open(utmos_result_path, "w", encoding="utf-8") as f: | |
for audio_path in tqdm(audio_paths, desc="Processing"): | |
wav, sr = librosa.load(audio_path, sr=None, mono=True) | |
wav_tensor = torch.from_numpy(wav).to(device).unsqueeze(0) | |
score = predictor(wav_tensor, sr) | |
line = {} | |
line["wav"], line["utmos"] = str(audio_path.stem), score.item() | |
utmos_score += score.item() | |
f.write(json.dumps(line, ensure_ascii=False) + "\n") | |
avg_score = utmos_score / len(audio_paths) if len(audio_paths) > 0 else 0 | |
f.write(f"\nUTMOS: {avg_score:.4f}\n") | |
print(f"UTMOS: {avg_score:.4f}") | |
print(f"UTMOS results saved to {utmos_result_path}") | |
if __name__ == "__main__": | |
main() | |