E2-F5-TTS / src /f5_tts /socket_server.py
mrfakename's picture
Sync from GitHub repo
43bc5dc verified
import argparse
import gc
import logging
import numpy as np
import queue
import socket
import struct
import threading
import traceback
import wave
from importlib.resources import files
import torch
import torchaudio
from huggingface_hub import hf_hub_download
from hydra.utils import get_class
from omegaconf import OmegaConf
from f5_tts.infer.utils_infer import (
chunk_text,
preprocess_ref_audio_text,
load_vocoder,
load_model,
infer_batch_process,
)
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class AudioFileWriterThread(threading.Thread):
"""Threaded file writer to avoid blocking the TTS streaming process."""
def __init__(self, output_file, sampling_rate):
super().__init__()
self.output_file = output_file
self.sampling_rate = sampling_rate
self.queue = queue.Queue()
self.stop_event = threading.Event()
self.audio_data = []
def run(self):
"""Process queued audio data and write it to a file."""
logger.info("AudioFileWriterThread started.")
with wave.open(self.output_file, "wb") as wf:
wf.setnchannels(1)
wf.setsampwidth(2)
wf.setframerate(self.sampling_rate)
while not self.stop_event.is_set() or not self.queue.empty():
try:
chunk = self.queue.get(timeout=0.1)
if chunk is not None:
chunk = np.int16(chunk * 32767)
self.audio_data.append(chunk)
wf.writeframes(chunk.tobytes())
except queue.Empty:
continue
def add_chunk(self, chunk):
"""Add a new chunk to the queue."""
self.queue.put(chunk)
def stop(self):
"""Stop writing and ensure all queued data is written."""
self.stop_event.set()
self.join()
logger.info("Audio writing completed.")
class TTSStreamingProcessor:
def __init__(self, model, ckpt_file, vocab_file, ref_audio, ref_text, device=None, dtype=torch.float32):
self.device = device or (
"cuda"
if torch.cuda.is_available()
else "xpu"
if torch.xpu.is_available()
else "mps"
if torch.backends.mps.is_available()
else "cpu"
)
model_cfg = OmegaConf.load(str(files("f5_tts").joinpath(f"configs/{model}.yaml")))
self.model_cls = get_class(f"f5_tts.model.{model_cfg.model.backbone}")
self.model_arc = model_cfg.model.arch
self.mel_spec_type = model_cfg.model.mel_spec.mel_spec_type
self.sampling_rate = model_cfg.model.mel_spec.target_sample_rate
self.model = self.load_ema_model(ckpt_file, vocab_file, dtype)
self.vocoder = self.load_vocoder_model()
self.update_reference(ref_audio, ref_text)
self._warm_up()
self.file_writer_thread = None
self.first_package = True
def load_ema_model(self, ckpt_file, vocab_file, dtype):
return load_model(
self.model_cls,
self.model_arc,
ckpt_path=ckpt_file,
mel_spec_type=self.mel_spec_type,
vocab_file=vocab_file,
ode_method="euler",
use_ema=True,
device=self.device,
).to(self.device, dtype=dtype)
def load_vocoder_model(self):
return load_vocoder(vocoder_name=self.mel_spec_type, is_local=False, local_path=None, device=self.device)
def update_reference(self, ref_audio, ref_text):
self.ref_audio, self.ref_text = preprocess_ref_audio_text(ref_audio, ref_text)
self.audio, self.sr = torchaudio.load(self.ref_audio)
ref_audio_duration = self.audio.shape[-1] / self.sr
ref_text_byte_len = len(self.ref_text.encode("utf-8"))
self.max_chars = int(ref_text_byte_len / (ref_audio_duration) * (25 - ref_audio_duration))
self.few_chars = int(ref_text_byte_len / (ref_audio_duration) * (25 - ref_audio_duration) / 2)
self.min_chars = int(ref_text_byte_len / (ref_audio_duration) * (25 - ref_audio_duration) / 4)
def _warm_up(self):
logger.info("Warming up the model...")
gen_text = "Warm-up text for the model."
for _ in infer_batch_process(
(self.audio, self.sr),
self.ref_text,
[gen_text],
self.model,
self.vocoder,
progress=None,
device=self.device,
streaming=True,
):
pass
logger.info("Warm-up completed.")
def generate_stream(self, text, conn):
text_batches = chunk_text(text, max_chars=self.max_chars)
if self.first_package:
text_batches = chunk_text(text_batches[0], max_chars=self.few_chars) + text_batches[1:]
text_batches = chunk_text(text_batches[0], max_chars=self.min_chars) + text_batches[1:]
self.first_package = False
audio_stream = infer_batch_process(
(self.audio, self.sr),
self.ref_text,
text_batches,
self.model,
self.vocoder,
progress=None,
device=self.device,
streaming=True,
chunk_size=2048,
)
# Reset the file writer thread
if self.file_writer_thread is not None:
self.file_writer_thread.stop()
self.file_writer_thread = AudioFileWriterThread("output.wav", self.sampling_rate)
self.file_writer_thread.start()
for audio_chunk, _ in audio_stream:
if len(audio_chunk) > 0:
logger.info(f"Generated audio chunk of size: {len(audio_chunk)}")
# Send audio chunk via socket
conn.sendall(struct.pack(f"{len(audio_chunk)}f", *audio_chunk))
# Write to file asynchronously
self.file_writer_thread.add_chunk(audio_chunk)
logger.info("Finished sending audio stream.")
conn.sendall(b"END") # Send end signal
# Ensure all audio data is written before exiting
self.file_writer_thread.stop()
def handle_client(conn, processor):
try:
with conn:
conn.setsockopt(socket.IPPROTO_TCP, socket.TCP_NODELAY, 1)
while True:
data = conn.recv(1024)
if not data:
processor.first_package = True
break
data_str = data.decode("utf-8").strip()
logger.info(f"Received text: {data_str}")
try:
processor.generate_stream(data_str, conn)
except Exception as inner_e:
logger.error(f"Error during processing: {inner_e}")
traceback.print_exc()
break
except Exception as e:
logger.error(f"Error handling client: {e}")
traceback.print_exc()
def start_server(host, port, processor):
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
s.bind((host, port))
s.listen()
logger.info(f"Server started on {host}:{port}")
while True:
conn, addr = s.accept()
logger.info(f"Connected by {addr}")
handle_client(conn, processor)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--host", default="0.0.0.0")
parser.add_argument("--port", default=9998)
parser.add_argument(
"--model",
default="F5TTS_v1_Base",
help="The model name, e.g. F5TTS_v1_Base",
)
parser.add_argument(
"--ckpt_file",
default=str(hf_hub_download(repo_id="SWivid/F5-TTS", filename="F5TTS_v1_Base/model_1250000.safetensors")),
help="Path to the model checkpoint file",
)
parser.add_argument(
"--vocab_file",
default="",
help="Path to the vocab file if customized",
)
parser.add_argument(
"--ref_audio",
default=str(files("f5_tts").joinpath("infer/examples/basic/basic_ref_en.wav")),
help="Reference audio to provide model with speaker characteristics",
)
parser.add_argument(
"--ref_text",
default="",
help="Reference audio subtitle, leave empty to auto-transcribe",
)
parser.add_argument("--device", default=None, help="Device to run the model on")
parser.add_argument("--dtype", default=torch.float32, help="Data type to use for model inference")
args = parser.parse_args()
try:
# Initialize the processor with the model and vocoder
processor = TTSStreamingProcessor(
model=args.model,
ckpt_file=args.ckpt_file,
vocab_file=args.vocab_file,
ref_audio=args.ref_audio,
ref_text=args.ref_text,
device=args.device,
dtype=args.dtype,
)
# Start the server
start_server(args.host, args.port, processor)
except KeyboardInterrupt:
gc.collect()