mrfakename's picture
Super-squash branch 'main' using huggingface_hub
0102e16 verified
#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
import os
import sys
import torch
import hydra
import logging
import argparse
from io import BytesIO
import torch.distributed as dist
from collections.abc import Sequence
from omegaconf import DictConfig, OmegaConf
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from funasr_detach.register import tables
from funasr_detach.optimizers import optim_classes
from funasr_detach.train_utils.trainer import Trainer
from funasr_detach.schedulers import scheduler_classes
from funasr_detach.train_utils.initialize import initialize
from funasr_detach.download.download_from_hub import download_model
from funasr_detach.models.lora.utils import mark_only_lora_as_trainable
from funasr_detach.train_utils.set_all_random_seed import set_all_random_seed
from funasr_detach.train_utils.load_pretrained_model import load_pretrained_model
# from funasr_detach.tokenizer.build_tokenizer import build_tokenizer
# from funasr_detach.tokenizer.token_id_converter import TokenIDConverter
# from funasr_detach.tokenizer.funtoken import build_tokenizer
@hydra.main(config_name=None, version_base=None)
def main_hydra(kwargs: DictConfig):
if kwargs.get("debug", False):
import pdb
pdb.set_trace()
assert "model" in kwargs
if "model_conf" not in kwargs:
logging.info(
"download models from model hub: {}".format(kwargs.get("model_hub", "ms"))
)
kwargs = download_model(is_training=kwargs.get("is_training", True), **kwargs)
main(**kwargs)
def main(**kwargs):
print(kwargs)
# set random seed
set_all_random_seed(kwargs.get("seed", 0))
torch.backends.cudnn.enabled = kwargs.get(
"cudnn_enabled", torch.backends.cudnn.enabled
)
torch.backends.cudnn.benchmark = kwargs.get(
"cudnn_benchmark", torch.backends.cudnn.benchmark
)
torch.backends.cudnn.deterministic = kwargs.get("cudnn_deterministic", True)
local_rank = int(os.environ.get("LOCAL_RANK", 0))
if local_rank == 0:
tables.print()
# Check if we are using DDP or FSDP
use_ddp = "WORLD_SIZE" in os.environ and int(os.environ["WORLD_SIZE"]) > 1
use_fsdp = kwargs.get("use_fsdp", None)
if use_ddp or use_fsdp:
dist.init_process_group(
backend=kwargs.get("backend", "nccl"), init_method="env://"
)
torch.cuda.set_device(local_rank)
# save config.yaml
if (
(use_ddp or use_fsdp)
and dist.get_rank() == 0
or not (use_ddp or use_fsdp)
and local_rank == 0
):
os.makedirs(kwargs.get("output_dir", "./"), exist_ok=True)
yaml_file = os.path.join(kwargs.get("output_dir", "./"), "config.yaml")
OmegaConf.save(config=kwargs, f=yaml_file)
logging.info("config.yaml is saved to: %s", yaml_file)
tokenizer = kwargs.get("tokenizer", None)
if tokenizer is not None:
tokenizer_class = tables.tokenizer_classes.get(tokenizer)
tokenizer = tokenizer_class(**kwargs["tokenizer_conf"])
kwargs["tokenizer"] = tokenizer
# build frontend if frontend is none None
frontend = kwargs.get("frontend", None)
if frontend is not None:
frontend_class = tables.frontend_classes.get(frontend)
frontend = frontend_class(**kwargs["frontend_conf"])
kwargs["frontend"] = frontend
kwargs["input_size"] = frontend.output_size()
# build model
model_class = tables.model_classes.get(kwargs["model"])
model = model_class(
**kwargs, **kwargs["model_conf"], vocab_size=len(tokenizer.token_list)
)
# init_param
init_param = kwargs.get("init_param", None)
if init_param is not None:
if not isinstance(init_param, (list, tuple)):
init_param = (init_param,)
logging.info("init_param is not None: %s", init_param)
for p in init_param:
logging.info(f"Loading pretrained params from {p}")
load_pretrained_model(
model=model,
path=p,
ignore_init_mismatch=kwargs.get("ignore_init_mismatch", True),
oss_bucket=kwargs.get("oss_bucket", None),
scope_map=kwargs.get("scope_map", None),
excludes=kwargs.get("excludes", None),
)
else:
initialize(model, kwargs.get("init", "kaiming_normal"))
# freeze_param
freeze_param = kwargs.get("freeze_param", None)
if freeze_param is not None:
freeze_param = eval(freeze_param)
if isinstance(freeze_param, Sequence):
freeze_param = (freeze_param,)
logging.info("freeze_param is not None: %s", freeze_param)
for t in freeze_param:
for k, p in model.named_parameters():
if k.startswith(t + ".") or k == t:
logging.info(f"Setting {k}.requires_grad = False")
p.requires_grad = False
if use_ddp:
model = model.cuda(local_rank)
model = DDP(
model,
device_ids=[local_rank],
find_unused_parameters=kwargs.get("train_conf", {}).get(
"find_unused_parameters", False
),
)
elif use_fsdp:
model = FSDP(model).cuda(local_rank)
else:
model = model.to(device=kwargs.get("device", "cuda"))
# optim
optim = kwargs.get("optim", "adam")
assert optim in optim_classes
optim_class = optim_classes.get(optim)
optim = optim_class(model.parameters(), **kwargs.get("optim_conf"))
# scheduler
scheduler = kwargs.get("scheduler", "warmuplr")
assert scheduler in scheduler_classes
scheduler_class = scheduler_classes.get(scheduler)
scheduler = scheduler_class(optim, **kwargs.get("scheduler_conf"))
# dataset
dataset_class = tables.dataset_classes.get(kwargs.get("dataset", "AudioDataset"))
dataset_tr = dataset_class(
kwargs.get("train_data_set_list"),
frontend=frontend,
tokenizer=tokenizer,
is_training=True,
**kwargs.get("dataset_conf"),
)
dataset_val = dataset_class(
kwargs.get("valid_data_set_list"),
frontend=frontend,
tokenizer=tokenizer,
is_training=False,
**kwargs.get("dataset_conf"),
)
# dataloader
batch_sampler = kwargs["dataset_conf"].get(
"batch_sampler", "DynamicBatchLocalShuffleSampler"
)
batch_sampler_val = None
if batch_sampler is not None:
batch_sampler_class = tables.batch_sampler_classes.get(batch_sampler)
batch_sampler = batch_sampler_class(dataset_tr, **kwargs.get("dataset_conf"))
batch_sampler_val = batch_sampler_class(
dataset_val, is_training=False, **kwargs.get("dataset_conf")
)
dataloader_tr = torch.utils.data.DataLoader(
dataset_tr,
collate_fn=dataset_tr.collator,
batch_sampler=batch_sampler,
num_workers=kwargs.get("dataset_conf").get("num_workers", 4),
pin_memory=True,
)
dataloader_val = torch.utils.data.DataLoader(
dataset_val,
collate_fn=dataset_val.collator,
batch_sampler=batch_sampler_val,
num_workers=kwargs.get("dataset_conf").get("num_workers", 4),
pin_memory=True,
)
trainer = Trainer(
model=model,
optim=optim,
scheduler=scheduler,
dataloader_train=dataloader_tr,
dataloader_val=dataloader_val,
local_rank=local_rank,
use_ddp=use_ddp,
use_fsdp=use_fsdp,
output_dir=kwargs.get("output_dir", "./exp"),
resume=kwargs.get("resume", True),
**kwargs.get("train_conf"),
)
trainer.run()
if use_ddp or use_fsdp:
torch.distributed.destroy_process_group()
if __name__ == "__main__":
main_hydra()