mrfakename's picture
Super-squash branch 'main' using huggingface_hub
0102e16 verified
import torch
import torch.nn.functional as F
from torch import nn, einsum
from einops import rearrange
def identity(t, *args, **kwargs):
return t
def append_dims(x, num_dims):
if num_dims <= 0:
return x
return x.view(*x.shape, *((1,) * num_dims))
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
def padding_to_multiple_of(n, mult):
remainder = n % mult
if remainder == 0:
return 0
return mult - remainder
class Transpose(nn.Module):
"""Wrapper class of torch.transpose() for Sequential module."""
def __init__(self, shape: tuple):
super(Transpose, self).__init__()
self.shape = shape
def forward(self, x):
return x.transpose(*self.shape)
class DepthwiseConv1d(nn.Module):
"""
When groups == in_channels and out_channels == K * in_channels, where K is a positive integer,
this operation is termed in literature as depthwise convolution.
Args:
in_channels (int): Number of channels in the input
out_channels (int): Number of channels produced by the convolution
kernel_size (int or tuple): Size of the convolving kernel
stride (int, optional): Stride of the convolution. Default: 1
padding (int or tuple, optional): Zero-padding added to both sides of the input. Default: 0
bias (bool, optional): If True, adds a learnable bias to the output. Default: True
Inputs: inputs
- **inputs** (batch, in_channels, time): Tensor containing input vector
Returns: outputs
- **outputs** (batch, out_channels, time): Tensor produces by depthwise 1-D convolution.
"""
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: int,
stride: int = 1,
padding: int = 0,
bias: bool = False,
) -> None:
super(DepthwiseConv1d, self).__init__()
assert (
out_channels % in_channels == 0
), "out_channels should be constant multiple of in_channels"
self.conv = nn.Conv1d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
groups=in_channels,
stride=stride,
padding=padding,
bias=bias,
)
def forward(self, inputs):
return self.conv(inputs)
class ConvModule(nn.Module):
"""
Conformer convolution module starts with a pointwise convolution and a gated linear unit (GLU).
This is followed by a single 1-D depthwise convolution layer. Batchnorm is deployed just after the convolution
to aid training deep models.
Args:
in_channels (int): Number of channels in the input
kernel_size (int or tuple, optional): Size of the convolving kernel Default: 31
dropout_p (float, optional): probability of dropout
Inputs: inputs
inputs (batch, time, dim): Tensor contains input sequences
Outputs: outputs
outputs (batch, time, dim): Tensor produces by conformer convolution module.
"""
def __init__(
self,
in_channels: int,
kernel_size: int = 17,
expansion_factor: int = 2,
dropout_p: float = 0.1,
) -> None:
super(ConvModule, self).__init__()
assert (
kernel_size - 1
) % 2 == 0, "kernel_size should be a odd number for 'SAME' padding"
assert expansion_factor == 2, "Currently, Only Supports expansion_factor 2"
self.sequential = nn.Sequential(
Transpose(shape=(1, 2)),
DepthwiseConv1d(
in_channels,
in_channels,
kernel_size,
stride=1,
padding=(kernel_size - 1) // 2,
),
)
def forward(self, inputs):
return inputs + self.sequential(inputs).transpose(1, 2)
class OffsetScale(nn.Module):
def __init__(self, dim, heads=1):
super().__init__()
self.gamma = nn.Parameter(torch.ones(heads, dim))
self.beta = nn.Parameter(torch.zeros(heads, dim))
nn.init.normal_(self.gamma, std=0.02)
def forward(self, x):
out = einsum("... d, h d -> ... h d", x, self.gamma) + self.beta
return out.unbind(dim=-2)
class FFConvM(nn.Module):
def __init__(self, dim_in, dim_out, norm_klass=nn.LayerNorm, dropout=0.1):
super().__init__()
self.mdl = nn.Sequential(
norm_klass(dim_in),
nn.Linear(dim_in, dim_out),
nn.SiLU(),
ConvModule(dim_out),
nn.Dropout(dropout),
)
def forward(
self,
x,
):
output = self.mdl(x)
return output
class FLASH_ShareA_FFConvM(nn.Module):
def __init__(
self,
*,
dim,
group_size=256,
query_key_dim=128,
expansion_factor=1.0,
causal=False,
dropout=0.1,
rotary_pos_emb=None,
norm_klass=nn.LayerNorm,
shift_tokens=True
):
super().__init__()
hidden_dim = int(dim * expansion_factor)
self.group_size = group_size
self.causal = causal
self.shift_tokens = shift_tokens
# positional embeddings
self.rotary_pos_emb = rotary_pos_emb
# norm
self.dropout = nn.Dropout(dropout)
# projections
self.to_hidden = FFConvM(
dim_in=dim,
dim_out=hidden_dim,
norm_klass=norm_klass,
dropout=dropout,
)
self.to_qk = FFConvM(
dim_in=dim,
dim_out=query_key_dim,
norm_klass=norm_klass,
dropout=dropout,
)
self.qk_offset_scale = OffsetScale(query_key_dim, heads=4)
self.to_out = FFConvM(
dim_in=dim * 2,
dim_out=dim,
norm_klass=norm_klass,
dropout=dropout,
)
self.gateActivate = nn.Sigmoid()
def forward(self, x, *, mask=None):
"""
b - batch
n - sequence length (within groups)
g - group dimension
d - feature dimension (keys)
e - feature dimension (values)
i - sequence dimension (source)
j - sequence dimension (target)
"""
normed_x = x
# do token shift - a great, costless trick from an independent AI researcher in Shenzhen
residual = x
if self.shift_tokens:
x_shift, x_pass = normed_x.chunk(2, dim=-1)
x_shift = F.pad(x_shift, (0, 0, 1, -1), value=0.0)
normed_x = torch.cat((x_shift, x_pass), dim=-1)
# initial projections
v, u = self.to_hidden(normed_x).chunk(2, dim=-1)
qk = self.to_qk(normed_x)
# offset and scale
quad_q, lin_q, quad_k, lin_k = self.qk_offset_scale(qk)
att_v, att_u = self.cal_attention(x, quad_q, lin_q, quad_k, lin_k, v, u)
out = (att_u * v) * self.gateActivate(att_v * u)
x = x + self.to_out(out)
return x
def cal_attention(self, x, quad_q, lin_q, quad_k, lin_k, v, u, mask=None):
b, n, device, g = x.shape[0], x.shape[-2], x.device, self.group_size
if exists(mask):
lin_mask = rearrange(mask, "... -> ... 1")
lin_k = lin_k.masked_fill(~lin_mask, 0.0)
# rotate queries and keys
if exists(self.rotary_pos_emb):
quad_q, lin_q, quad_k, lin_k = map(
self.rotary_pos_emb.rotate_queries_or_keys,
(quad_q, lin_q, quad_k, lin_k),
)
# padding for groups
padding = padding_to_multiple_of(n, g)
if padding > 0:
quad_q, quad_k, lin_q, lin_k, v, u = map(
lambda t: F.pad(t, (0, 0, 0, padding), value=0.0),
(quad_q, quad_k, lin_q, lin_k, v, u),
)
mask = default(mask, torch.ones((b, n), device=device, dtype=torch.bool))
mask = F.pad(mask, (0, padding), value=False)
# group along sequence
quad_q, quad_k, lin_q, lin_k, v, u = map(
lambda t: rearrange(t, "b (g n) d -> b g n d", n=self.group_size),
(quad_q, quad_k, lin_q, lin_k, v, u),
)
if exists(mask):
mask = rearrange(mask, "b (g j) -> b g 1 j", j=g)
# calculate quadratic attention output
sim = einsum("... i d, ... j d -> ... i j", quad_q, quad_k) / g
attn = F.relu(sim) ** 2
attn = self.dropout(attn)
if exists(mask):
attn = attn.masked_fill(~mask, 0.0)
if self.causal:
causal_mask = torch.ones((g, g), dtype=torch.bool, device=device).triu(1)
attn = attn.masked_fill(causal_mask, 0.0)
quad_out_v = einsum("... i j, ... j d -> ... i d", attn, v)
quad_out_u = einsum("... i j, ... j d -> ... i d", attn, u)
# calculate linear attention output
if self.causal:
lin_kv = einsum("b g n d, b g n e -> b g d e", lin_k, v) / g
# exclusive cumulative sum along group dimension
lin_kv = lin_kv.cumsum(dim=1)
lin_kv = F.pad(lin_kv, (0, 0, 0, 0, 1, -1), value=0.0)
lin_out_v = einsum("b g d e, b g n d -> b g n e", lin_kv, lin_q)
lin_ku = einsum("b g n d, b g n e -> b g d e", lin_k, u) / g
# exclusive cumulative sum along group dimension
lin_ku = lin_ku.cumsum(dim=1)
lin_ku = F.pad(lin_ku, (0, 0, 0, 0, 1, -1), value=0.0)
lin_out_u = einsum("b g d e, b g n d -> b g n e", lin_ku, lin_q)
else:
lin_kv = einsum("b g n d, b g n e -> b d e", lin_k, v) / n
lin_out_v = einsum("b g n d, b d e -> b g n e", lin_q, lin_kv)
lin_ku = einsum("b g n d, b g n e -> b d e", lin_k, u) / n
lin_out_u = einsum("b g n d, b d e -> b g n e", lin_q, lin_ku)
# fold back groups into full sequence, and excise out padding
return map(
lambda t: rearrange(t, "b g n d -> b (g n) d")[:, :n],
(quad_out_v + lin_out_v, quad_out_u + lin_out_u),
)