Spaces:
Runtime error
Runtime error
#!/usr/bin/env python3 | |
# -*- encoding: utf-8 -*- | |
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved. | |
# MIT License (https://opensource.org/licenses/MIT) | |
import math | |
import torch | |
from typing import Optional, Tuple, Union | |
from funasr_detach.models.transformer.utils.nets_utils import pad_to_len | |
class TooShortUttError(Exception): | |
"""Raised when the utt is too short for subsampling. | |
Args: | |
message (str): Message for error catch | |
actual_size (int): the short size that cannot pass the subsampling | |
limit (int): the limit size for subsampling | |
""" | |
def __init__(self, message, actual_size, limit): | |
"""Construct a TooShortUttError for error handler.""" | |
super().__init__(message) | |
self.actual_size = actual_size | |
self.limit = limit | |
def check_short_utt(ins, size): | |
"""Check if the utterance is too short for subsampling.""" | |
if isinstance(ins, Conv2dSubsampling2) and size < 3: | |
return True, 3 | |
if isinstance(ins, Conv2dSubsampling) and size < 7: | |
return True, 7 | |
if isinstance(ins, Conv2dSubsampling6) and size < 11: | |
return True, 11 | |
if isinstance(ins, Conv2dSubsampling8) and size < 15: | |
return True, 15 | |
return False, -1 | |
class RWKVConvInput(torch.nn.Module): | |
"""Streaming ConvInput module definition. | |
Args: | |
input_size: Input size. | |
conv_size: Convolution size. | |
subsampling_factor: Subsampling factor. | |
output_size: Block output dimension. | |
""" | |
def __init__( | |
self, | |
input_size: int, | |
conv_size: Union[int, Tuple], | |
subsampling_factor: int = 4, | |
conv_kernel_size: int = 3, | |
output_size: Optional[int] = None, | |
) -> None: | |
"""Construct a ConvInput object.""" | |
super().__init__() | |
if subsampling_factor == 1: | |
conv_size1, conv_size2, conv_size3 = conv_size | |
self.conv = torch.nn.Sequential( | |
torch.nn.Conv2d( | |
1, | |
conv_size1, | |
conv_kernel_size, | |
stride=1, | |
padding=(conv_kernel_size - 1) // 2, | |
), | |
torch.nn.ReLU(), | |
torch.nn.Conv2d( | |
conv_size1, | |
conv_size1, | |
conv_kernel_size, | |
stride=[1, 2], | |
padding=(conv_kernel_size - 1) // 2, | |
), | |
torch.nn.ReLU(), | |
torch.nn.Conv2d( | |
conv_size1, | |
conv_size2, | |
conv_kernel_size, | |
stride=1, | |
padding=(conv_kernel_size - 1) // 2, | |
), | |
torch.nn.ReLU(), | |
torch.nn.Conv2d( | |
conv_size2, | |
conv_size2, | |
conv_kernel_size, | |
stride=[1, 2], | |
padding=(conv_kernel_size - 1) // 2, | |
), | |
torch.nn.ReLU(), | |
torch.nn.Conv2d( | |
conv_size2, | |
conv_size3, | |
conv_kernel_size, | |
stride=1, | |
padding=(conv_kernel_size - 1) // 2, | |
), | |
torch.nn.ReLU(), | |
torch.nn.Conv2d( | |
conv_size3, | |
conv_size3, | |
conv_kernel_size, | |
stride=[1, 2], | |
padding=(conv_kernel_size - 1) // 2, | |
), | |
torch.nn.ReLU(), | |
) | |
output_proj = conv_size3 * ((input_size // 2) // 2) | |
self.subsampling_factor = 1 | |
self.stride_1 = 1 | |
self.create_new_mask = self.create_new_vgg_mask | |
else: | |
conv_size1, conv_size2, conv_size3 = conv_size | |
kernel_1 = int(subsampling_factor / 2) | |
self.conv = torch.nn.Sequential( | |
torch.nn.Conv2d( | |
1, | |
conv_size1, | |
conv_kernel_size, | |
stride=1, | |
padding=(conv_kernel_size - 1) // 2, | |
), | |
torch.nn.ReLU(), | |
torch.nn.Conv2d( | |
conv_size1, | |
conv_size1, | |
conv_kernel_size, | |
stride=[kernel_1, 2], | |
padding=(conv_kernel_size - 1) // 2, | |
), | |
torch.nn.ReLU(), | |
torch.nn.Conv2d( | |
conv_size1, | |
conv_size2, | |
conv_kernel_size, | |
stride=1, | |
padding=(conv_kernel_size - 1) // 2, | |
), | |
torch.nn.ReLU(), | |
torch.nn.Conv2d( | |
conv_size2, | |
conv_size2, | |
conv_kernel_size, | |
stride=[2, 2], | |
padding=(conv_kernel_size - 1) // 2, | |
), | |
torch.nn.ReLU(), | |
torch.nn.Conv2d( | |
conv_size2, | |
conv_size3, | |
conv_kernel_size, | |
stride=1, | |
padding=(conv_kernel_size - 1) // 2, | |
), | |
torch.nn.ReLU(), | |
torch.nn.Conv2d( | |
conv_size3, | |
conv_size3, | |
conv_kernel_size, | |
stride=1, | |
padding=(conv_kernel_size - 1) // 2, | |
), | |
torch.nn.ReLU(), | |
) | |
output_proj = conv_size3 * ((input_size // 2) // 2) | |
self.subsampling_factor = subsampling_factor | |
self.create_new_mask = self.create_new_vgg_mask | |
self.stride_1 = kernel_1 | |
self.min_frame_length = 7 | |
if output_size is not None: | |
self.output = torch.nn.Linear(output_proj, output_size) | |
self.output_size = output_size | |
else: | |
self.output = None | |
self.output_size = output_proj | |
def forward( | |
self, | |
x: torch.Tensor, | |
mask: Optional[torch.Tensor], | |
chunk_size: Optional[torch.Tensor], | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
"""Encode input sequences. | |
Args: | |
x: ConvInput input sequences. (B, T, D_feats) | |
mask: Mask of input sequences. (B, 1, T) | |
Returns: | |
x: ConvInput output sequences. (B, sub(T), D_out) | |
mask: Mask of output sequences. (B, 1, sub(T)) | |
""" | |
if mask is not None: | |
mask = self.create_new_mask(mask) | |
olens = max(mask.eq(0).sum(1)) | |
b, t, f = x.size() | |
x = x.unsqueeze(1) # (b. 1. t. f) | |
if chunk_size is not None: | |
max_input_length = int( | |
chunk_size | |
* self.subsampling_factor | |
* (math.ceil(float(t) / (chunk_size * self.subsampling_factor))) | |
) | |
x = map(lambda inputs: pad_to_len(inputs, max_input_length, 1), x) | |
x = list(x) | |
x = torch.stack(x, dim=0) | |
N_chunks = max_input_length // (chunk_size * self.subsampling_factor) | |
x = x.view(b * N_chunks, 1, chunk_size * self.subsampling_factor, f) | |
x = self.conv(x) | |
_, c, _, f = x.size() | |
if chunk_size is not None: | |
x = x.transpose(1, 2).contiguous().view(b, -1, c * f)[:, :olens, :] | |
else: | |
x = x.transpose(1, 2).contiguous().view(b, -1, c * f) | |
if self.output is not None: | |
x = self.output(x) | |
return x, mask[:, :olens][:, : x.size(1)] | |
def create_new_vgg_mask(self, mask: torch.Tensor) -> torch.Tensor: | |
"""Create a new mask for VGG output sequences. | |
Args: | |
mask: Mask of input sequences. (B, T) | |
Returns: | |
mask: Mask of output sequences. (B, sub(T)) | |
""" | |
if self.subsampling_factor > 1: | |
return mask[:, ::2][:, :: self.stride_1] | |
else: | |
return mask | |
def get_size_before_subsampling(self, size: int) -> int: | |
"""Return the original size before subsampling for a given size. | |
Args: | |
size: Number of frames after subsampling. | |
Returns: | |
: Number of frames before subsampling. | |
""" | |
return size * self.subsampling_factor | |