mrfakename's picture
Super-squash branch 'main' using huggingface_hub
0102e16 verified
# Copyright ESPnet (https://github.com/espnet/espnet). All Rights Reserved.
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
import logging
from contextlib import contextmanager
from distutils.version import LooseVersion
from typing import Dict
from typing import List
from typing import Optional
from typing import Tuple
from typing import Union
import torch
import torch.nn.functional as F
from funasr_detach.layers.abs_normalize import AbsNormalize
from funasr_detach.losses.label_smoothing_loss import (
LabelSmoothingLoss,
NllLoss,
) # noqa: H301
from funasr_detach.models.ctc import CTC
from funasr_detach.models.decoder.abs_decoder import AbsDecoder
from funasr_detach.models.encoder.abs_encoder import AbsEncoder
from funasr_detach.frontends.abs_frontend import AbsFrontend
from funasr_detach.models.postencoder.abs_postencoder import AbsPostEncoder
from funasr_detach.models.preencoder.abs_preencoder import AbsPreEncoder
from funasr_detach.models.specaug.abs_specaug import AbsSpecAug
from funasr_detach.models.transformer.utils.add_sos_eos import add_sos_eos
from funasr_detach.metrics import ErrorCalculator
from funasr_detach.metrics.compute_acc import th_accuracy
from funasr_detach.train_utils.device_funcs import force_gatherable
from funasr_detach.models.base_model import FunASRModel
if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"):
from torch.cuda.amp import autocast
else:
# Nothing to do if torch<1.6.0
@contextmanager
def autocast(enabled=True):
yield
class SAASRModel(FunASRModel):
"""CTC-attention hybrid Encoder-Decoder model"""
def __init__(
self,
vocab_size: int,
max_spk_num: int,
token_list: Union[Tuple[str, ...], List[str]],
frontend: Optional[AbsFrontend],
specaug: Optional[AbsSpecAug],
normalize: Optional[AbsNormalize],
asr_encoder: AbsEncoder,
spk_encoder: torch.nn.Module,
decoder: AbsDecoder,
ctc: CTC,
spk_weight: float = 0.5,
ctc_weight: float = 0.5,
interctc_weight: float = 0.0,
ignore_id: int = -1,
lsm_weight: float = 0.0,
length_normalized_loss: bool = False,
report_cer: bool = True,
report_wer: bool = True,
sym_space: str = "<space>",
sym_blank: str = "<blank>",
extract_feats_in_collect_stats: bool = True,
):
assert 0.0 <= ctc_weight <= 1.0, ctc_weight
assert 0.0 <= interctc_weight < 1.0, interctc_weight
super().__init__()
# note that eos is the same as sos (equivalent ID)
self.blank_id = 0
self.sos = 1
self.eos = 2
self.vocab_size = vocab_size
self.max_spk_num = max_spk_num
self.ignore_id = ignore_id
self.spk_weight = spk_weight
self.ctc_weight = ctc_weight
self.interctc_weight = interctc_weight
self.token_list = token_list.copy()
self.frontend = frontend
self.specaug = specaug
self.normalize = normalize
self.asr_encoder = asr_encoder
self.spk_encoder = spk_encoder
if not hasattr(self.asr_encoder, "interctc_use_conditioning"):
self.asr_encoder.interctc_use_conditioning = False
if self.asr_encoder.interctc_use_conditioning:
self.asr_encoder.conditioning_layer = torch.nn.Linear(
vocab_size, self.asr_encoder.output_size()
)
self.error_calculator = None
# we set self.decoder = None in the CTC mode since
# self.decoder parameters were never used and PyTorch complained
# and threw an Exception in the multi-GPU experiment.
# thanks Jeff Farris for pointing out the issue.
if ctc_weight == 1.0:
self.decoder = None
else:
self.decoder = decoder
self.criterion_att = LabelSmoothingLoss(
size=vocab_size,
padding_idx=ignore_id,
smoothing=lsm_weight,
normalize_length=length_normalized_loss,
)
self.criterion_spk = NllLoss(
size=max_spk_num,
padding_idx=ignore_id,
normalize_length=length_normalized_loss,
)
if report_cer or report_wer:
self.error_calculator = ErrorCalculator(
token_list, sym_space, sym_blank, report_cer, report_wer
)
if ctc_weight == 0.0:
self.ctc = None
else:
self.ctc = ctc
self.extract_feats_in_collect_stats = extract_feats_in_collect_stats
def forward(
self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
text: torch.Tensor,
text_lengths: torch.Tensor,
profile: torch.Tensor,
profile_lengths: torch.Tensor,
text_id: torch.Tensor,
text_id_lengths: torch.Tensor,
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]:
"""Frontend + Encoder + Decoder + Calc loss
Args:
speech: (Batch, Length, ...)
speech_lengths: (Batch, )
text: (Batch, Length)
text_lengths: (Batch,)
profile: (Batch, Length, Dim)
profile_lengths: (Batch,)
"""
assert text_lengths.dim() == 1, text_lengths.shape
# Check that batch_size is unified
assert (
speech.shape[0]
== speech_lengths.shape[0]
== text.shape[0]
== text_lengths.shape[0]
), (speech.shape, speech_lengths.shape, text.shape, text_lengths.shape)
batch_size = speech.shape[0]
# for data-parallel
text = text[:, : text_lengths.max()]
# 1. Encoder
asr_encoder_out, encoder_out_lens, spk_encoder_out = self.encode(
speech, speech_lengths
)
intermediate_outs = None
if isinstance(asr_encoder_out, tuple):
intermediate_outs = asr_encoder_out[1]
asr_encoder_out = asr_encoder_out[0]
loss_att, loss_spk, acc_att, acc_spk, cer_att, wer_att = (
None,
None,
None,
None,
None,
None,
)
loss_ctc, cer_ctc = None, None
stats = dict()
# 1. CTC branch
if self.ctc_weight != 0.0:
loss_ctc, cer_ctc = self._calc_ctc_loss(
asr_encoder_out, encoder_out_lens, text, text_lengths
)
# Intermediate CTC (optional)
loss_interctc = 0.0
if self.interctc_weight != 0.0 and intermediate_outs is not None:
for layer_idx, intermediate_out in intermediate_outs:
# we assume intermediate_out has the same length & padding
# as those of encoder_out
loss_ic, cer_ic = self._calc_ctc_loss(
intermediate_out, encoder_out_lens, text, text_lengths
)
loss_interctc = loss_interctc + loss_ic
# Collect Intermedaite CTC stats
stats["loss_interctc_layer{}".format(layer_idx)] = (
loss_ic.detach() if loss_ic is not None else None
)
stats["cer_interctc_layer{}".format(layer_idx)] = cer_ic
loss_interctc = loss_interctc / len(intermediate_outs)
# calculate whole encoder loss
loss_ctc = (
1 - self.interctc_weight
) * loss_ctc + self.interctc_weight * loss_interctc
# 2b. Attention decoder branch
if self.ctc_weight != 1.0:
loss_att, loss_spk, acc_att, acc_spk, cer_att, wer_att = (
self._calc_att_loss(
asr_encoder_out,
spk_encoder_out,
encoder_out_lens,
text,
text_lengths,
profile,
profile_lengths,
text_id,
text_id_lengths,
)
)
# 3. CTC-Att loss definition
if self.ctc_weight == 0.0:
loss_asr = loss_att
elif self.ctc_weight == 1.0:
loss_asr = loss_ctc
else:
loss_asr = self.ctc_weight * loss_ctc + (1 - self.ctc_weight) * loss_att
if self.spk_weight == 0.0:
loss = loss_asr
else:
loss = self.spk_weight * loss_spk + (1 - self.spk_weight) * loss_asr
stats = dict(
loss=loss.detach(),
loss_asr=loss_asr.detach(),
loss_att=loss_att.detach() if loss_att is not None else None,
loss_ctc=loss_ctc.detach() if loss_ctc is not None else None,
loss_spk=loss_spk.detach() if loss_spk is not None else None,
acc=acc_att,
acc_spk=acc_spk,
cer=cer_att,
wer=wer_att,
cer_ctc=cer_ctc,
)
# force_gatherable: to-device and to-tensor if scalar for DataParallel
loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device)
return loss, stats, weight
def collect_feats(
self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
text: torch.Tensor,
text_lengths: torch.Tensor,
) -> Dict[str, torch.Tensor]:
if self.extract_feats_in_collect_stats:
feats, feats_lengths = self._extract_feats(speech, speech_lengths)
else:
# Generate dummy stats if extract_feats_in_collect_stats is False
logging.warning(
"Generating dummy stats for feats and feats_lengths, "
"because encoder_conf.extract_feats_in_collect_stats is "
f"{self.extract_feats_in_collect_stats}"
)
feats, feats_lengths = speech, speech_lengths
return {"feats": feats, "feats_lengths": feats_lengths}
def encode(
self, speech: torch.Tensor, speech_lengths: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Frontend + Encoder. Note that this method is used by asr_inference.py
Args:
speech: (Batch, Length, ...)
speech_lengths: (Batch, )
"""
with autocast(False):
# 1. Extract feats
feats, feats_lengths = self._extract_feats(speech, speech_lengths)
# 2. Data augmentation
feats_raw = feats.clone()
if self.specaug is not None and self.training:
feats, feats_lengths = self.specaug(feats, feats_lengths)
# 3. Normalization for feature: e.g. Global-CMVN, Utterance-CMVN
if self.normalize is not None:
feats, feats_lengths = self.normalize(feats, feats_lengths)
# 4. Forward encoder
# feats: (Batch, Length, Dim)
# -> encoder_out: (Batch, Length2, Dim2)
if self.asr_encoder.interctc_use_conditioning:
encoder_out, encoder_out_lens, _ = self.asr_encoder(
feats, feats_lengths, ctc=self.ctc
)
else:
encoder_out, encoder_out_lens, _ = self.asr_encoder(feats, feats_lengths)
intermediate_outs = None
if isinstance(encoder_out, tuple):
intermediate_outs = encoder_out[1]
encoder_out = encoder_out[0]
encoder_out_spk_ori = self.spk_encoder(feats_raw, feats_lengths)[0]
# import ipdb;ipdb.set_trace()
if encoder_out_spk_ori.size(1) != encoder_out.size(1):
encoder_out_spk = F.interpolate(
encoder_out_spk_ori.transpose(-2, -1),
size=(encoder_out.size(1)),
mode="nearest",
).transpose(-2, -1)
else:
encoder_out_spk = encoder_out_spk_ori
assert encoder_out.size(0) == speech.size(0), (
encoder_out.size(),
speech.size(0),
)
assert encoder_out.size(1) <= encoder_out_lens.max(), (
encoder_out.size(),
encoder_out_lens.max(),
)
assert encoder_out_spk.size(0) == speech.size(0), (
encoder_out_spk.size(),
speech.size(0),
)
if intermediate_outs is not None:
return (encoder_out, intermediate_outs), encoder_out_lens, encoder_out_spk
return encoder_out, encoder_out_lens, encoder_out_spk
def _extract_feats(
self, speech: torch.Tensor, speech_lengths: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
assert speech_lengths.dim() == 1, speech_lengths.shape
# for data-parallel
speech = speech[:, : speech_lengths.max()]
if self.frontend is not None:
# Frontend
# e.g. STFT and Feature extract
# data_loader may send time-domain signal in this case
# speech (Batch, NSamples) -> feats: (Batch, NFrames, Dim)
feats, feats_lengths = self.frontend(speech, speech_lengths)
else:
# No frontend and no feature extract
feats, feats_lengths = speech, speech_lengths
return feats, feats_lengths
def nll(
self,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
ys_pad: torch.Tensor,
ys_pad_lens: torch.Tensor,
) -> torch.Tensor:
"""Compute negative log likelihood(nll) from transformer-decoder
Normally, this function is called in batchify_nll.
Args:
encoder_out: (Batch, Length, Dim)
encoder_out_lens: (Batch,)
ys_pad: (Batch, Length)
ys_pad_lens: (Batch,)
"""
ys_in_pad, ys_out_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id)
ys_in_lens = ys_pad_lens + 1
# 1. Forward decoder
decoder_out, _ = self.decoder(
encoder_out, encoder_out_lens, ys_in_pad, ys_in_lens
) # [batch, seqlen, dim]
batch_size = decoder_out.size(0)
decoder_num_class = decoder_out.size(2)
# nll: negative log-likelihood
nll = torch.nn.functional.cross_entropy(
decoder_out.view(-1, decoder_num_class),
ys_out_pad.view(-1),
ignore_index=self.ignore_id,
reduction="none",
)
nll = nll.view(batch_size, -1)
nll = nll.sum(dim=1)
assert nll.size(0) == batch_size
return nll
def batchify_nll(
self,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
ys_pad: torch.Tensor,
ys_pad_lens: torch.Tensor,
batch_size: int = 100,
):
"""Compute negative log likelihood(nll) from transformer-decoder
To avoid OOM, this fuction seperate the input into batches.
Then call nll for each batch and combine and return results.
Args:
encoder_out: (Batch, Length, Dim)
encoder_out_lens: (Batch,)
ys_pad: (Batch, Length)
ys_pad_lens: (Batch,)
batch_size: int, samples each batch contain when computing nll,
you may change this to avoid OOM or increase
GPU memory usage
"""
total_num = encoder_out.size(0)
if total_num <= batch_size:
nll = self.nll(encoder_out, encoder_out_lens, ys_pad, ys_pad_lens)
else:
nll = []
start_idx = 0
while True:
end_idx = min(start_idx + batch_size, total_num)
batch_encoder_out = encoder_out[start_idx:end_idx, :, :]
batch_encoder_out_lens = encoder_out_lens[start_idx:end_idx]
batch_ys_pad = ys_pad[start_idx:end_idx, :]
batch_ys_pad_lens = ys_pad_lens[start_idx:end_idx]
batch_nll = self.nll(
batch_encoder_out,
batch_encoder_out_lens,
batch_ys_pad,
batch_ys_pad_lens,
)
nll.append(batch_nll)
start_idx = end_idx
if start_idx == total_num:
break
nll = torch.cat(nll)
assert nll.size(0) == total_num
return nll
def _calc_att_loss(
self,
asr_encoder_out: torch.Tensor,
spk_encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
ys_pad: torch.Tensor,
ys_pad_lens: torch.Tensor,
profile: torch.Tensor,
profile_lens: torch.Tensor,
text_id: torch.Tensor,
text_id_lengths: torch.Tensor,
):
ys_in_pad, ys_out_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id)
ys_in_lens = ys_pad_lens + 1
# 1. Forward decoder
decoder_out, weights_no_pad, _ = self.decoder(
asr_encoder_out,
spk_encoder_out,
encoder_out_lens,
ys_in_pad,
ys_in_lens,
profile,
profile_lens,
)
spk_num_no_pad = weights_no_pad.size(-1)
pad = (0, self.max_spk_num - spk_num_no_pad)
weights = F.pad(weights_no_pad, pad, mode="constant", value=0)
# pre_id=weights.argmax(-1)
# pre_text=decoder_out.argmax(-1)
# id_mask=(pre_id==text_id).to(dtype=text_id.dtype)
# pre_text_mask=pre_text*id_mask+1-id_mask #相同的地方不变,不同的地方设为1(<unk>)
# padding_mask= ys_out_pad != self.ignore_id
# numerator = torch.sum(pre_text_mask.masked_select(padding_mask) == ys_out_pad.masked_select(padding_mask))
# denominator = torch.sum(padding_mask)
# sd_acc = float(numerator) / float(denominator)
# 2. Compute attention loss
loss_att = self.criterion_att(decoder_out, ys_out_pad)
loss_spk = self.criterion_spk(torch.log(weights), text_id)
acc_spk = th_accuracy(
weights.view(-1, self.max_spk_num),
text_id,
ignore_label=self.ignore_id,
)
acc_att = th_accuracy(
decoder_out.view(-1, self.vocab_size),
ys_out_pad,
ignore_label=self.ignore_id,
)
# Compute cer/wer using attention-decoder
if self.training or self.error_calculator is None:
cer_att, wer_att = None, None
else:
ys_hat = decoder_out.argmax(dim=-1)
cer_att, wer_att = self.error_calculator(ys_hat.cpu(), ys_pad.cpu())
return loss_att, loss_spk, acc_att, acc_spk, cer_att, wer_att
def _calc_ctc_loss(
self,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
ys_pad: torch.Tensor,
ys_pad_lens: torch.Tensor,
):
# Calc CTC loss
loss_ctc = self.ctc(encoder_out, encoder_out_lens, ys_pad, ys_pad_lens)
# Calc CER using CTC
cer_ctc = None
if not self.training and self.error_calculator is not None:
ys_hat = self.ctc.argmax(encoder_out).data
cer_ctc = self.error_calculator(ys_hat.cpu(), ys_pad.cpu(), is_ctc=True)
return loss_ctc, cer_ctc