Spaces:
Runtime error
Runtime error
#!/usr/bin/env python3 | |
# -*- encoding: utf-8 -*- | |
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved. | |
# MIT License (https://opensource.org/licenses/MIT) | |
import os | |
import re | |
import time | |
import copy | |
import torch | |
import codecs | |
import logging | |
import tempfile | |
import requests | |
import numpy as np | |
from typing import Dict, Tuple | |
from contextlib import contextmanager | |
from distutils.version import LooseVersion | |
from funasr_detach.register import tables | |
from funasr_detach.utils import postprocess_utils | |
from funasr_detach.metrics.compute_acc import th_accuracy | |
from funasr_detach.models.paraformer.model import Paraformer | |
from funasr_detach.utils.datadir_writer import DatadirWriter | |
from funasr_detach.models.paraformer.search import Hypothesis | |
from funasr_detach.models.paraformer.cif_predictor import mae_loss | |
from funasr_detach.train_utils.device_funcs import force_gatherable | |
from funasr_detach.models.bicif_paraformer.model import BiCifParaformer | |
from funasr_detach.losses.label_smoothing_loss import LabelSmoothingLoss | |
from funasr_detach.utils.timestamp_tools import ts_prediction_lfr6_standard | |
from funasr_detach.models.transformer.utils.add_sos_eos import add_sos_eos | |
from funasr_detach.models.transformer.utils.nets_utils import make_pad_mask, pad_list | |
from funasr_detach.utils.load_utils import load_audio_text_image_video, extract_fbank | |
if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"): | |
from torch.cuda.amp import autocast | |
else: | |
# Nothing to do if torch<1.6.0 | |
def autocast(enabled=True): | |
yield | |
class SeacoParaformer(BiCifParaformer, Paraformer): | |
""" | |
Author: Speech Lab of DAMO Academy, Alibaba Group | |
SeACo-Paraformer: A Non-Autoregressive ASR System with Flexible and Effective Hotword Customization Ability | |
https://arxiv.org/abs/2308.03266 | |
""" | |
def __init__( | |
self, | |
*args, | |
**kwargs, | |
): | |
super().__init__(*args, **kwargs) | |
self.inner_dim = kwargs.get("inner_dim", 256) | |
self.bias_encoder_type = kwargs.get("bias_encoder_type", "lstm") | |
bias_encoder_dropout_rate = kwargs.get("bias_encoder_dropout_rate", 0.0) | |
bias_encoder_bid = kwargs.get("bias_encoder_bid", False) | |
seaco_lsm_weight = kwargs.get("seaco_lsm_weight", 0.0) | |
seaco_length_normalized_loss = kwargs.get("seaco_length_normalized_loss", True) | |
# bias encoder | |
if self.bias_encoder_type == "lstm": | |
self.bias_encoder = torch.nn.LSTM( | |
self.inner_dim, | |
self.inner_dim, | |
2, | |
batch_first=True, | |
dropout=bias_encoder_dropout_rate, | |
bidirectional=bias_encoder_bid, | |
) | |
if bias_encoder_bid: | |
self.lstm_proj = torch.nn.Linear(self.inner_dim * 2, self.inner_dim) | |
else: | |
self.lstm_proj = None | |
self.bias_embed = torch.nn.Embedding(self.vocab_size, self.inner_dim) | |
elif self.bias_encoder_type == "mean": | |
self.bias_embed = torch.nn.Embedding(self.vocab_size, self.inner_dim) | |
else: | |
logging.error( | |
"Unsupport bias encoder type: {}".format(self.bias_encoder_type) | |
) | |
# seaco decoder | |
seaco_decoder = kwargs.get("seaco_decoder", None) | |
if seaco_decoder is not None: | |
seaco_decoder_conf = kwargs.get("seaco_decoder_conf") | |
seaco_decoder_class = tables.decoder_classes.get(seaco_decoder) | |
self.seaco_decoder = seaco_decoder_class( | |
vocab_size=self.vocab_size, | |
encoder_output_size=self.inner_dim, | |
**seaco_decoder_conf, | |
) | |
self.hotword_output_layer = torch.nn.Linear(self.inner_dim, self.vocab_size) | |
self.criterion_seaco = LabelSmoothingLoss( | |
size=self.vocab_size, | |
padding_idx=self.ignore_id, | |
smoothing=seaco_lsm_weight, | |
normalize_length=seaco_length_normalized_loss, | |
) | |
self.train_decoder = kwargs.get("train_decoder", False) | |
self.NO_BIAS = kwargs.get("NO_BIAS", 8377) | |
def forward( | |
self, | |
speech: torch.Tensor, | |
speech_lengths: torch.Tensor, | |
text: torch.Tensor, | |
text_lengths: torch.Tensor, | |
**kwargs, | |
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]: | |
"""Frontend + Encoder + Decoder + Calc loss | |
Args: | |
speech: (Batch, Length, ...) | |
speech_lengths: (Batch, ) | |
text: (Batch, Length) | |
text_lengths: (Batch,) | |
""" | |
assert text_lengths.dim() == 1, text_lengths.shape | |
# Check that batch_size is unified | |
assert ( | |
speech.shape[0] | |
== speech_lengths.shape[0] | |
== text.shape[0] | |
== text_lengths.shape[0] | |
), (speech.shape, speech_lengths.shape, text.shape, text_lengths.shape) | |
hotword_pad = kwargs.get("hotword_pad") | |
hotword_lengths = kwargs.get("hotword_lengths") | |
dha_pad = kwargs.get("dha_pad") | |
batch_size = speech.shape[0] | |
self.step_cur += 1 | |
# for data-parallel | |
text = text[:, : text_lengths.max()] | |
speech = speech[:, : speech_lengths.max()] | |
# 1. Encoder | |
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths) | |
if self.predictor_bias == 1: | |
_, ys_pad = add_sos_eos(text, self.sos, self.eos, self.ignore_id) | |
ys_lengths = text_lengths + self.predictor_bias | |
stats = dict() | |
loss_seaco = self._calc_seaco_loss( | |
encoder_out, | |
encoder_out_lens, | |
ys_pad, | |
ys_lengths, | |
hotword_pad, | |
hotword_lengths, | |
dha_pad, | |
) | |
if self.train_decoder: | |
loss_att, acc_att = self._calc_att_loss( | |
encoder_out, encoder_out_lens, text, text_lengths | |
) | |
loss = loss_seaco + loss_att | |
stats["loss_att"] = torch.clone(loss_att.detach()) | |
stats["acc_att"] = acc_att | |
else: | |
loss = loss_seaco | |
stats["loss_seaco"] = torch.clone(loss_seaco.detach()) | |
stats["loss"] = torch.clone(loss.detach()) | |
# force_gatherable: to-device and to-tensor if scalar for DataParallel | |
if self.length_normalized_loss: | |
batch_size = (text_lengths + self.predictor_bias).sum().type_as(batch_size) | |
loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device) | |
return loss, stats, weight | |
def _merge(self, cif_attended, dec_attended): | |
return cif_attended + dec_attended | |
def _calc_seaco_loss( | |
self, | |
encoder_out: torch.Tensor, | |
encoder_out_lens: torch.Tensor, | |
ys_pad: torch.Tensor, | |
ys_lengths: torch.Tensor, | |
hotword_pad: torch.Tensor, | |
hotword_lengths: torch.Tensor, | |
dha_pad: torch.Tensor, | |
): | |
# predictor forward | |
encoder_out_mask = ( | |
~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :] | |
).to(encoder_out.device) | |
pre_acoustic_embeds, _, _, _ = self.predictor( | |
encoder_out, ys_pad, encoder_out_mask, ignore_id=self.ignore_id | |
) | |
# decoder forward | |
decoder_out, _ = self.decoder( | |
encoder_out, | |
encoder_out_lens, | |
pre_acoustic_embeds, | |
ys_lengths, | |
return_hidden=True, | |
) | |
selected = self._hotword_representation(hotword_pad, hotword_lengths) | |
contextual_info = ( | |
selected.squeeze(0) | |
.repeat(encoder_out.shape[0], 1, 1) | |
.to(encoder_out.device) | |
) | |
num_hot_word = contextual_info.shape[1] | |
_contextual_length = ( | |
torch.Tensor([num_hot_word]) | |
.int() | |
.repeat(encoder_out.shape[0]) | |
.to(encoder_out.device) | |
) | |
# dha core | |
cif_attended, _ = self.seaco_decoder( | |
contextual_info, _contextual_length, pre_acoustic_embeds, ys_lengths | |
) | |
dec_attended, _ = self.seaco_decoder( | |
contextual_info, _contextual_length, decoder_out, ys_lengths | |
) | |
merged = self._merge(cif_attended, dec_attended) | |
dha_output = self.hotword_output_layer( | |
merged[:, :-1] | |
) # remove the last token in loss calculation | |
loss_att = self.criterion_seaco(dha_output, dha_pad) | |
return loss_att | |
def _seaco_decode_with_ASF( | |
self, | |
encoder_out, | |
encoder_out_lens, | |
sematic_embeds, | |
ys_pad_lens, | |
hw_list, | |
nfilter=50, | |
seaco_weight=1.0, | |
): | |
# decoder forward | |
decoder_out, decoder_hidden, _ = self.decoder( | |
encoder_out, | |
encoder_out_lens, | |
sematic_embeds, | |
ys_pad_lens, | |
return_hidden=True, | |
return_both=True, | |
) | |
decoder_pred = torch.log_softmax(decoder_out, dim=-1) | |
if hw_list is not None: | |
hw_lengths = [len(i) for i in hw_list] | |
hw_list_ = [torch.Tensor(i).long() for i in hw_list] | |
hw_list_pad = pad_list(hw_list_, 0).to(encoder_out.device) | |
selected = self._hotword_representation( | |
hw_list_pad, torch.Tensor(hw_lengths).int().to(encoder_out.device) | |
) | |
contextual_info = ( | |
selected.squeeze(0) | |
.repeat(encoder_out.shape[0], 1, 1) | |
.to(encoder_out.device) | |
) | |
num_hot_word = contextual_info.shape[1] | |
_contextual_length = ( | |
torch.Tensor([num_hot_word]) | |
.int() | |
.repeat(encoder_out.shape[0]) | |
.to(encoder_out.device) | |
) | |
# ASF Core | |
if nfilter > 0 and nfilter < num_hot_word: | |
for dec in self.seaco_decoder.decoders: | |
dec.reserve_attn = True | |
# cif_attended, _ = self.decoder2(contextual_info, _contextual_length, sematic_embeds, ys_pad_lens) | |
dec_attended, _ = self.seaco_decoder( | |
contextual_info, _contextual_length, decoder_hidden, ys_pad_lens | |
) | |
# cif_filter = torch.topk(self.decoder2.decoders[-1].attn_mat[0][0].sum(0).sum(0)[:-1], min(nfilter, num_hot_word-1))[1].tolist() | |
hotword_scores = ( | |
self.seaco_decoder.decoders[-1].attn_mat[0][0].sum(0).sum(0)[:-1] | |
) | |
# hotword_scores /= torch.sqrt(torch.tensor(hw_lengths)[:-1].float()).to(hotword_scores.device) | |
dec_filter = torch.topk(hotword_scores, min(nfilter, num_hot_word - 1))[ | |
1 | |
].tolist() | |
add_filter = dec_filter | |
add_filter.append(len(hw_list_pad) - 1) | |
# filter hotword embedding | |
selected = selected[add_filter] | |
# again | |
contextual_info = ( | |
selected.squeeze(0) | |
.repeat(encoder_out.shape[0], 1, 1) | |
.to(encoder_out.device) | |
) | |
num_hot_word = contextual_info.shape[1] | |
_contextual_length = ( | |
torch.Tensor([num_hot_word]) | |
.int() | |
.repeat(encoder_out.shape[0]) | |
.to(encoder_out.device) | |
) | |
for dec in self.seaco_decoder.decoders: | |
dec.attn_mat = [] | |
dec.reserve_attn = False | |
# SeACo Core | |
cif_attended, _ = self.seaco_decoder( | |
contextual_info, _contextual_length, sematic_embeds, ys_pad_lens | |
) | |
dec_attended, _ = self.seaco_decoder( | |
contextual_info, _contextual_length, decoder_hidden, ys_pad_lens | |
) | |
merged = self._merge(cif_attended, dec_attended) | |
dha_output = self.hotword_output_layer( | |
merged | |
) # remove the last token in loss calculation | |
dha_pred = torch.log_softmax(dha_output, dim=-1) | |
def _merge_res(dec_output, dha_output): | |
lmbd = torch.Tensor([seaco_weight] * dha_output.shape[0]) | |
dha_ids = dha_output.max(-1)[-1] # [0] | |
dha_mask = (dha_ids == 8377).int().unsqueeze(-1) | |
a = (1 - lmbd) / lmbd | |
b = 1 / lmbd | |
a, b = a.to(dec_output.device), b.to(dec_output.device) | |
dha_mask = (dha_mask + a.reshape(-1, 1, 1)) / b.reshape(-1, 1, 1) | |
# logits = dec_output * dha_mask + dha_output[:,:,:-1] * (1-dha_mask) | |
logits = dec_output * dha_mask + dha_output[:, :, :] * (1 - dha_mask) | |
return logits | |
merged_pred = _merge_res(decoder_pred, dha_pred) | |
# import pdb; pdb.set_trace() | |
return merged_pred | |
else: | |
return decoder_pred | |
def _hotword_representation(self, hotword_pad, hotword_lengths): | |
if self.bias_encoder_type != "lstm": | |
logging.error("Unsupported bias encoder type") | |
hw_embed = self.decoder.embed(hotword_pad) | |
hw_embed, (_, _) = self.bias_encoder(hw_embed) | |
if self.lstm_proj is not None: | |
hw_embed = self.lstm_proj(hw_embed) | |
_ind = np.arange(0, hw_embed.shape[0]).tolist() | |
selected = hw_embed[ | |
_ind, [i - 1 for i in hotword_lengths.detach().cpu().tolist()] | |
] | |
return selected | |
""" | |
def calc_predictor(self, encoder_out, encoder_out_lens): | |
encoder_out_mask = (~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]).to( | |
encoder_out.device) | |
pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index, pre_token_length2 = self.predictor(encoder_out, | |
None, | |
encoder_out_mask, | |
ignore_id=self.ignore_id) | |
return pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index | |
def calc_predictor_timestamp(self, encoder_out, encoder_out_lens, token_num): | |
encoder_out_mask = (~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]).to( | |
encoder_out.device) | |
ds_alphas, ds_cif_peak, us_alphas, us_peaks = self.predictor.get_upsample_timestamp(encoder_out, | |
encoder_out_mask, | |
token_num) | |
return ds_alphas, ds_cif_peak, us_alphas, us_peaks | |
""" | |
def inference( | |
self, | |
data_in, | |
data_lengths=None, | |
key: list = None, | |
tokenizer=None, | |
frontend=None, | |
**kwargs, | |
): | |
# init beamsearch | |
is_use_ctc = ( | |
kwargs.get("decoding_ctc_weight", 0.0) > 0.00001 and self.ctc != None | |
) | |
is_use_lm = ( | |
kwargs.get("lm_weight", 0.0) > 0.00001 | |
and kwargs.get("lm_file", None) is not None | |
) | |
if self.beam_search is None and (is_use_lm or is_use_ctc): | |
logging.info("enable beam_search") | |
self.init_beam_search(**kwargs) | |
self.nbest = kwargs.get("nbest", 1) | |
meta_data = {} | |
# extract fbank feats | |
time1 = time.perf_counter() | |
audio_sample_list = load_audio_text_image_video( | |
data_in, fs=frontend.fs, audio_fs=kwargs.get("fs", 16000) | |
) | |
time2 = time.perf_counter() | |
meta_data["load_data"] = f"{time2 - time1:0.3f}" | |
speech, speech_lengths = extract_fbank( | |
audio_sample_list, | |
data_type=kwargs.get("data_type", "sound"), | |
frontend=frontend, | |
) | |
time3 = time.perf_counter() | |
meta_data["extract_feat"] = f"{time3 - time2:0.3f}" | |
meta_data["batch_data_time"] = ( | |
speech_lengths.sum().item() * frontend.frame_shift * frontend.lfr_n / 1000 | |
) | |
speech = speech.to(device=kwargs["device"]) | |
speech_lengths = speech_lengths.to(device=kwargs["device"]) | |
# hotword | |
self.hotword_list = self.generate_hotwords_list( | |
kwargs.get("hotword", None), tokenizer=tokenizer, frontend=frontend | |
) | |
# Encoder | |
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths) | |
if isinstance(encoder_out, tuple): | |
encoder_out = encoder_out[0] | |
# predictor | |
predictor_outs = self.calc_predictor(encoder_out, encoder_out_lens) | |
pre_acoustic_embeds, pre_token_length, _, _ = ( | |
predictor_outs[0], | |
predictor_outs[1], | |
predictor_outs[2], | |
predictor_outs[3], | |
) | |
pre_token_length = pre_token_length.round().long() | |
if torch.max(pre_token_length) < 1: | |
return [] | |
decoder_out = self._seaco_decode_with_ASF( | |
encoder_out, | |
encoder_out_lens, | |
pre_acoustic_embeds, | |
pre_token_length, | |
hw_list=self.hotword_list, | |
) | |
# decoder_out, _ = decoder_outs[0], decoder_outs[1] | |
_, _, us_alphas, us_peaks = self.calc_predictor_timestamp( | |
encoder_out, encoder_out_lens, pre_token_length | |
) | |
results = [] | |
b, n, d = decoder_out.size() | |
for i in range(b): | |
x = encoder_out[i, : encoder_out_lens[i], :] | |
am_scores = decoder_out[i, : pre_token_length[i], :] | |
if self.beam_search is not None: | |
nbest_hyps = self.beam_search( | |
x=x, | |
am_scores=am_scores, | |
maxlenratio=kwargs.get("maxlenratio", 0.0), | |
minlenratio=kwargs.get("minlenratio", 0.0), | |
) | |
nbest_hyps = nbest_hyps[: self.nbest] | |
else: | |
yseq = am_scores.argmax(dim=-1) | |
score = am_scores.max(dim=-1)[0] | |
score = torch.sum(score, dim=-1) | |
# pad with mask tokens to ensure compatibility with sos/eos tokens | |
yseq = torch.tensor( | |
[self.sos] + yseq.tolist() + [self.eos], device=yseq.device | |
) | |
nbest_hyps = [Hypothesis(yseq=yseq, score=score)] | |
for nbest_idx, hyp in enumerate(nbest_hyps): | |
ibest_writer = None | |
if kwargs.get("output_dir") is not None: | |
if not hasattr(self, "writer"): | |
self.writer = DatadirWriter(kwargs.get("output_dir")) | |
ibest_writer = self.writer[f"{nbest_idx + 1}best_recog"] | |
# remove sos/eos and get results | |
last_pos = -1 | |
if isinstance(hyp.yseq, list): | |
token_int = hyp.yseq[1:last_pos] | |
else: | |
token_int = hyp.yseq[1:last_pos].tolist() | |
# remove blank symbol id, which is assumed to be 0 | |
token_int = list( | |
filter( | |
lambda x: x != self.eos | |
and x != self.sos | |
and x != self.blank_id, | |
token_int, | |
) | |
) | |
if tokenizer is not None: | |
# Change integer-ids to tokens | |
token = tokenizer.ids2tokens(token_int) | |
text = tokenizer.tokens2text(token) | |
_, timestamp = ts_prediction_lfr6_standard( | |
us_alphas[i][: encoder_out_lens[i] * 3], | |
us_peaks[i][: encoder_out_lens[i] * 3], | |
copy.copy(token), | |
vad_offset=kwargs.get("begin_time", 0), | |
) | |
text_postprocessed, time_stamp_postprocessed, word_lists = ( | |
postprocess_utils.sentence_postprocess(token, timestamp) | |
) | |
result_i = { | |
"key": key[i], | |
"text": text_postprocessed, | |
"timestamp": time_stamp_postprocessed, | |
} | |
if ibest_writer is not None: | |
ibest_writer["token"][key[i]] = " ".join(token) | |
ibest_writer["timestamp"][key[i]] = time_stamp_postprocessed | |
ibest_writer["text"][key[i]] = text_postprocessed | |
else: | |
result_i = {"key": key[i], "token_int": token_int} | |
results.append(result_i) | |
return results, meta_data | |
def generate_hotwords_list( | |
self, hotword_list_or_file, tokenizer=None, frontend=None | |
): | |
def load_seg_dict(seg_dict_file): | |
seg_dict = {} | |
assert isinstance(seg_dict_file, str) | |
with open(seg_dict_file, "r", encoding="utf8") as f: | |
lines = f.readlines() | |
for line in lines: | |
s = line.strip().split() | |
key = s[0] | |
value = s[1:] | |
seg_dict[key] = " ".join(value) | |
return seg_dict | |
def seg_tokenize(txt, seg_dict): | |
pattern = re.compile(r"^[\u4E00-\u9FA50-9]+$") | |
out_txt = "" | |
for word in txt: | |
word = word.lower() | |
if word in seg_dict: | |
out_txt += seg_dict[word] + " " | |
else: | |
if pattern.match(word): | |
for char in word: | |
if char in seg_dict: | |
out_txt += seg_dict[char] + " " | |
else: | |
out_txt += "<unk>" + " " | |
else: | |
out_txt += "<unk>" + " " | |
return out_txt.strip().split() | |
seg_dict = None | |
if frontend.cmvn_file is not None: | |
model_dir = os.path.dirname(frontend.cmvn_file) | |
seg_dict_file = os.path.join(model_dir, "seg_dict") | |
if os.path.exists(seg_dict_file): | |
seg_dict = load_seg_dict(seg_dict_file) | |
else: | |
seg_dict = None | |
# for None | |
if hotword_list_or_file is None: | |
hotword_list = None | |
# for local txt inputs | |
elif os.path.exists(hotword_list_or_file) and hotword_list_or_file.endswith( | |
".txt" | |
): | |
logging.info("Attempting to parse hotwords from local txt...") | |
hotword_list = [] | |
hotword_str_list = [] | |
with codecs.open(hotword_list_or_file, "r") as fin: | |
for line in fin.readlines(): | |
hw = line.strip() | |
hw_list = hw.split() | |
if seg_dict is not None: | |
hw_list = seg_tokenize(hw_list, seg_dict) | |
hotword_str_list.append(hw) | |
hotword_list.append(tokenizer.tokens2ids(hw_list)) | |
hotword_list.append([self.sos]) | |
hotword_str_list.append("<s>") | |
logging.info( | |
"Initialized hotword list from file: {}, hotword list: {}.".format( | |
hotword_list_or_file, hotword_str_list | |
) | |
) | |
# for url, download and generate txt | |
elif hotword_list_or_file.startswith("http"): | |
logging.info("Attempting to parse hotwords from url...") | |
work_dir = tempfile.TemporaryDirectory().name | |
if not os.path.exists(work_dir): | |
os.makedirs(work_dir) | |
text_file_path = os.path.join( | |
work_dir, os.path.basename(hotword_list_or_file) | |
) | |
local_file = requests.get(hotword_list_or_file) | |
open(text_file_path, "wb").write(local_file.content) | |
hotword_list_or_file = text_file_path | |
hotword_list = [] | |
hotword_str_list = [] | |
with codecs.open(hotword_list_or_file, "r") as fin: | |
for line in fin.readlines(): | |
hw = line.strip() | |
hw_list = hw.split() | |
if seg_dict is not None: | |
hw_list = seg_tokenize(hw_list, seg_dict) | |
hotword_str_list.append(hw) | |
hotword_list.append(tokenizer.tokens2ids(hw_list)) | |
hotword_list.append([self.sos]) | |
hotword_str_list.append("<s>") | |
logging.info( | |
"Initialized hotword list from file: {}, hotword list: {}.".format( | |
hotword_list_or_file, hotword_str_list | |
) | |
) | |
# for text str input | |
elif not hotword_list_or_file.endswith(".txt"): | |
logging.info("Attempting to parse hotwords as str...") | |
hotword_list = [] | |
hotword_str_list = [] | |
for hw in hotword_list_or_file.strip().split(): | |
hotword_str_list.append(hw) | |
hw_list = hw.strip().split() | |
if seg_dict is not None: | |
hw_list = seg_tokenize(hw_list, seg_dict) | |
hotword_list.append(tokenizer.tokens2ids(hw_list)) | |
hotword_list.append([self.sos]) | |
hotword_str_list.append("<s>") | |
logging.info("Hotword list: {}.".format(hotword_str_list)) | |
else: | |
hotword_list = None | |
return hotword_list | |