mrfakename's picture
Super-squash branch 'main' using huggingface_hub
0102e16 verified
from typing import List
from typing import Optional
from typing import Sequence
from typing import Tuple
from typing import Union
import logging
import torch
import torch.nn as nn
from torch.nn import functional as F
import numpy as np
from funasr_detach.models.transformer.utils.nets_utils import make_pad_mask
from funasr_detach.models.transformer.layer_norm import LayerNorm
from funasr_detach.models.encoder.abs_encoder import AbsEncoder
import math
from funasr_detach.models.transformer.utils.repeat import repeat
class EncoderLayer(nn.Module):
def __init__(
self,
input_units,
num_units,
kernel_size=3,
activation="tanh",
stride=1,
include_batch_norm=False,
residual=False,
):
super().__init__()
left_padding = math.ceil((kernel_size - stride) / 2)
right_padding = kernel_size - stride - left_padding
self.conv_padding = nn.ConstantPad1d((left_padding, right_padding), 0.0)
self.conv1d = nn.Conv1d(
input_units,
num_units,
kernel_size,
stride,
)
self.activation = self.get_activation(activation)
if include_batch_norm:
self.bn = nn.BatchNorm1d(num_units, momentum=0.99, eps=1e-3)
self.residual = residual
self.include_batch_norm = include_batch_norm
self.input_units = input_units
self.num_units = num_units
self.stride = stride
@staticmethod
def get_activation(activation):
if activation == "tanh":
return nn.Tanh()
else:
return nn.ReLU()
def forward(self, xs_pad, ilens=None):
outputs = self.conv1d(self.conv_padding(xs_pad))
if self.residual and self.stride == 1 and self.input_units == self.num_units:
outputs = outputs + xs_pad
if self.include_batch_norm:
outputs = self.bn(outputs)
# add parenthesis for repeat module
return self.activation(outputs), ilens
class ConvEncoder(AbsEncoder):
"""
Author: Speech Lab of DAMO Academy, Alibaba Group
Convolution encoder in OpenNMT framework
"""
def __init__(
self,
num_layers,
input_units,
num_units,
kernel_size=3,
dropout_rate=0.3,
position_encoder=None,
activation="tanh",
auxiliary_states=True,
out_units=None,
out_norm=False,
out_residual=False,
include_batchnorm=False,
regularization_weight=0.0,
stride=1,
tf2torch_tensor_name_prefix_torch: str = "speaker_encoder",
tf2torch_tensor_name_prefix_tf: str = "EAND/speaker_encoder",
):
super().__init__()
self._output_size = num_units
self.num_layers = num_layers
self.input_units = input_units
self.num_units = num_units
self.kernel_size = kernel_size
self.dropout_rate = dropout_rate
self.position_encoder = position_encoder
self.out_units = out_units
self.auxiliary_states = auxiliary_states
self.out_norm = out_norm
self.activation = activation
self.out_residual = out_residual
self.include_batch_norm = include_batchnorm
self.regularization_weight = regularization_weight
self.tf2torch_tensor_name_prefix_torch = tf2torch_tensor_name_prefix_torch
self.tf2torch_tensor_name_prefix_tf = tf2torch_tensor_name_prefix_tf
if isinstance(stride, int):
self.stride = [stride] * self.num_layers
else:
self.stride = stride
self.downsample_rate = 1
for s in self.stride:
self.downsample_rate *= s
self.dropout = nn.Dropout(dropout_rate)
self.cnn_a = repeat(
self.num_layers,
lambda lnum: EncoderLayer(
input_units if lnum == 0 else num_units,
num_units,
kernel_size,
activation,
self.stride[lnum],
include_batchnorm,
residual=True if lnum > 0 else False,
),
)
if self.out_units is not None:
left_padding = math.ceil((kernel_size - stride) / 2)
right_padding = kernel_size - stride - left_padding
self.out_padding = nn.ConstantPad1d((left_padding, right_padding), 0.0)
self.conv_out = nn.Conv1d(
num_units,
out_units,
kernel_size,
)
if self.out_norm:
self.after_norm = LayerNorm(out_units)
def output_size(self) -> int:
return self.num_units
def forward(
self,
xs_pad: torch.Tensor,
ilens: torch.Tensor,
prev_states: torch.Tensor = None,
) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
inputs = xs_pad
if self.position_encoder is not None:
inputs = self.position_encoder(inputs)
if self.dropout_rate > 0:
inputs = self.dropout(inputs)
outputs, _ = self.cnn_a(inputs.transpose(1, 2), ilens)
if self.out_units is not None:
outputs = self.conv_out(self.out_padding(outputs))
outputs = outputs.transpose(1, 2)
if self.out_norm:
outputs = self.after_norm(outputs)
if self.out_residual:
outputs = outputs + inputs
return outputs, ilens, None
def gen_tf2torch_map_dict(self):
tensor_name_prefix_torch = self.tf2torch_tensor_name_prefix_torch
tensor_name_prefix_tf = self.tf2torch_tensor_name_prefix_tf
map_dict_local = {
# torch: conv1d.weight in "out_channel in_channel kernel_size"
# tf : conv1d.weight in "kernel_size in_channel out_channel"
# torch: linear.weight in "out_channel in_channel"
# tf : dense.weight in "in_channel out_channel"
"{}.cnn_a.0.conv1d.weight".format(tensor_name_prefix_torch): {
"name": "{}/cnn_a/conv1d/kernel".format(tensor_name_prefix_tf),
"squeeze": None,
"transpose": (2, 1, 0),
},
"{}.cnn_a.0.conv1d.bias".format(tensor_name_prefix_torch): {
"name": "{}/cnn_a/conv1d/bias".format(tensor_name_prefix_tf),
"squeeze": None,
"transpose": None,
},
"{}.cnn_a.layeridx.conv1d.weight".format(tensor_name_prefix_torch): {
"name": "{}/cnn_a/conv1d_layeridx/kernel".format(tensor_name_prefix_tf),
"squeeze": None,
"transpose": (2, 1, 0),
},
"{}.cnn_a.layeridx.conv1d.bias".format(tensor_name_prefix_torch): {
"name": "{}/cnn_a/conv1d_layeridx/bias".format(tensor_name_prefix_tf),
"squeeze": None,
"transpose": None,
},
}
if self.out_units is not None:
# add output layer
map_dict_local.update(
{
"{}.conv_out.weight".format(tensor_name_prefix_torch): {
"name": "{}/cnn_a/conv1d_{}/kernel".format(
tensor_name_prefix_tf, self.num_layers
),
"squeeze": None,
"transpose": (2, 1, 0),
}, # tf: (1, 256, 256) -> torch: (256, 256, 1)
"{}.conv_out.bias".format(tensor_name_prefix_torch): {
"name": "{}/cnn_a/conv1d_{}/bias".format(
tensor_name_prefix_tf, self.num_layers
),
"squeeze": None,
"transpose": None,
}, # tf: (256,) -> torch: (256,)
}
)
return map_dict_local
def convert_tf2torch(
self,
var_dict_tf,
var_dict_torch,
):
map_dict = self.gen_tf2torch_map_dict()
var_dict_torch_update = dict()
for name in sorted(var_dict_torch.keys(), reverse=False):
if name.startswith(self.tf2torch_tensor_name_prefix_torch):
# process special (first and last) layers
if name in map_dict:
name_tf = map_dict[name]["name"]
data_tf = var_dict_tf[name_tf]
if map_dict[name]["squeeze"] is not None:
data_tf = np.squeeze(data_tf, axis=map_dict[name]["squeeze"])
if map_dict[name]["transpose"] is not None:
data_tf = np.transpose(data_tf, map_dict[name]["transpose"])
data_tf = torch.from_numpy(data_tf).type(torch.float32).to("cpu")
assert (
var_dict_torch[name].size() == data_tf.size()
), "{}, {}, {} != {}".format(
name, name_tf, var_dict_torch[name].size(), data_tf.size()
)
var_dict_torch_update[name] = data_tf
logging.info(
"torch tensor: {}, {}, loading from tf tensor: {}, {}".format(
name, data_tf.size(), name_tf, var_dict_tf[name_tf].shape
)
)
# process general layers
else:
# self.tf2torch_tensor_name_prefix_torch may include ".", solve this case
names = name.replace(
self.tf2torch_tensor_name_prefix_torch, "todo"
).split(".")
layeridx = int(names[2])
name_q = name.replace(".{}.".format(layeridx), ".layeridx.")
if name_q in map_dict.keys():
name_v = map_dict[name_q]["name"]
name_tf = name_v.replace("layeridx", "{}".format(layeridx))
data_tf = var_dict_tf[name_tf]
if map_dict[name_q]["squeeze"] is not None:
data_tf = np.squeeze(
data_tf, axis=map_dict[name_q]["squeeze"]
)
if map_dict[name_q]["transpose"] is not None:
data_tf = np.transpose(
data_tf, map_dict[name_q]["transpose"]
)
data_tf = (
torch.from_numpy(data_tf).type(torch.float32).to("cpu")
)
assert (
var_dict_torch[name].size() == data_tf.size()
), "{}, {}, {} != {}".format(
name, name_tf, var_dict_torch[name].size(), data_tf.size()
)
var_dict_torch_update[name] = data_tf
logging.info(
"torch tensor: {}, {}, loading from tf tensor: {}, {}".format(
name,
data_tf.size(),
name_tf,
var_dict_tf[name_tf].shape,
)
)
else:
logging.warning("{} is missed from tf checkpoint".format(name))
return var_dict_torch_update