Spaces:
Runtime error
Runtime error
from typing import List | |
from typing import Optional | |
from typing import Sequence | |
from typing import Tuple | |
from typing import Union | |
import logging | |
import torch | |
import torch.nn as nn | |
from torch.nn import functional as F | |
import numpy as np | |
from funasr_detach.models.transformer.utils.nets_utils import make_pad_mask | |
from funasr_detach.models.transformer.layer_norm import LayerNorm | |
from funasr_detach.models.encoder.abs_encoder import AbsEncoder | |
import math | |
from funasr_detach.models.transformer.utils.repeat import repeat | |
class EncoderLayer(nn.Module): | |
def __init__( | |
self, | |
input_units, | |
num_units, | |
kernel_size=3, | |
activation="tanh", | |
stride=1, | |
include_batch_norm=False, | |
residual=False, | |
): | |
super().__init__() | |
left_padding = math.ceil((kernel_size - stride) / 2) | |
right_padding = kernel_size - stride - left_padding | |
self.conv_padding = nn.ConstantPad1d((left_padding, right_padding), 0.0) | |
self.conv1d = nn.Conv1d( | |
input_units, | |
num_units, | |
kernel_size, | |
stride, | |
) | |
self.activation = self.get_activation(activation) | |
if include_batch_norm: | |
self.bn = nn.BatchNorm1d(num_units, momentum=0.99, eps=1e-3) | |
self.residual = residual | |
self.include_batch_norm = include_batch_norm | |
self.input_units = input_units | |
self.num_units = num_units | |
self.stride = stride | |
def get_activation(activation): | |
if activation == "tanh": | |
return nn.Tanh() | |
else: | |
return nn.ReLU() | |
def forward(self, xs_pad, ilens=None): | |
outputs = self.conv1d(self.conv_padding(xs_pad)) | |
if self.residual and self.stride == 1 and self.input_units == self.num_units: | |
outputs = outputs + xs_pad | |
if self.include_batch_norm: | |
outputs = self.bn(outputs) | |
# add parenthesis for repeat module | |
return self.activation(outputs), ilens | |
class ConvEncoder(AbsEncoder): | |
""" | |
Author: Speech Lab of DAMO Academy, Alibaba Group | |
Convolution encoder in OpenNMT framework | |
""" | |
def __init__( | |
self, | |
num_layers, | |
input_units, | |
num_units, | |
kernel_size=3, | |
dropout_rate=0.3, | |
position_encoder=None, | |
activation="tanh", | |
auxiliary_states=True, | |
out_units=None, | |
out_norm=False, | |
out_residual=False, | |
include_batchnorm=False, | |
regularization_weight=0.0, | |
stride=1, | |
tf2torch_tensor_name_prefix_torch: str = "speaker_encoder", | |
tf2torch_tensor_name_prefix_tf: str = "EAND/speaker_encoder", | |
): | |
super().__init__() | |
self._output_size = num_units | |
self.num_layers = num_layers | |
self.input_units = input_units | |
self.num_units = num_units | |
self.kernel_size = kernel_size | |
self.dropout_rate = dropout_rate | |
self.position_encoder = position_encoder | |
self.out_units = out_units | |
self.auxiliary_states = auxiliary_states | |
self.out_norm = out_norm | |
self.activation = activation | |
self.out_residual = out_residual | |
self.include_batch_norm = include_batchnorm | |
self.regularization_weight = regularization_weight | |
self.tf2torch_tensor_name_prefix_torch = tf2torch_tensor_name_prefix_torch | |
self.tf2torch_tensor_name_prefix_tf = tf2torch_tensor_name_prefix_tf | |
if isinstance(stride, int): | |
self.stride = [stride] * self.num_layers | |
else: | |
self.stride = stride | |
self.downsample_rate = 1 | |
for s in self.stride: | |
self.downsample_rate *= s | |
self.dropout = nn.Dropout(dropout_rate) | |
self.cnn_a = repeat( | |
self.num_layers, | |
lambda lnum: EncoderLayer( | |
input_units if lnum == 0 else num_units, | |
num_units, | |
kernel_size, | |
activation, | |
self.stride[lnum], | |
include_batchnorm, | |
residual=True if lnum > 0 else False, | |
), | |
) | |
if self.out_units is not None: | |
left_padding = math.ceil((kernel_size - stride) / 2) | |
right_padding = kernel_size - stride - left_padding | |
self.out_padding = nn.ConstantPad1d((left_padding, right_padding), 0.0) | |
self.conv_out = nn.Conv1d( | |
num_units, | |
out_units, | |
kernel_size, | |
) | |
if self.out_norm: | |
self.after_norm = LayerNorm(out_units) | |
def output_size(self) -> int: | |
return self.num_units | |
def forward( | |
self, | |
xs_pad: torch.Tensor, | |
ilens: torch.Tensor, | |
prev_states: torch.Tensor = None, | |
) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]: | |
inputs = xs_pad | |
if self.position_encoder is not None: | |
inputs = self.position_encoder(inputs) | |
if self.dropout_rate > 0: | |
inputs = self.dropout(inputs) | |
outputs, _ = self.cnn_a(inputs.transpose(1, 2), ilens) | |
if self.out_units is not None: | |
outputs = self.conv_out(self.out_padding(outputs)) | |
outputs = outputs.transpose(1, 2) | |
if self.out_norm: | |
outputs = self.after_norm(outputs) | |
if self.out_residual: | |
outputs = outputs + inputs | |
return outputs, ilens, None | |
def gen_tf2torch_map_dict(self): | |
tensor_name_prefix_torch = self.tf2torch_tensor_name_prefix_torch | |
tensor_name_prefix_tf = self.tf2torch_tensor_name_prefix_tf | |
map_dict_local = { | |
# torch: conv1d.weight in "out_channel in_channel kernel_size" | |
# tf : conv1d.weight in "kernel_size in_channel out_channel" | |
# torch: linear.weight in "out_channel in_channel" | |
# tf : dense.weight in "in_channel out_channel" | |
"{}.cnn_a.0.conv1d.weight".format(tensor_name_prefix_torch): { | |
"name": "{}/cnn_a/conv1d/kernel".format(tensor_name_prefix_tf), | |
"squeeze": None, | |
"transpose": (2, 1, 0), | |
}, | |
"{}.cnn_a.0.conv1d.bias".format(tensor_name_prefix_torch): { | |
"name": "{}/cnn_a/conv1d/bias".format(tensor_name_prefix_tf), | |
"squeeze": None, | |
"transpose": None, | |
}, | |
"{}.cnn_a.layeridx.conv1d.weight".format(tensor_name_prefix_torch): { | |
"name": "{}/cnn_a/conv1d_layeridx/kernel".format(tensor_name_prefix_tf), | |
"squeeze": None, | |
"transpose": (2, 1, 0), | |
}, | |
"{}.cnn_a.layeridx.conv1d.bias".format(tensor_name_prefix_torch): { | |
"name": "{}/cnn_a/conv1d_layeridx/bias".format(tensor_name_prefix_tf), | |
"squeeze": None, | |
"transpose": None, | |
}, | |
} | |
if self.out_units is not None: | |
# add output layer | |
map_dict_local.update( | |
{ | |
"{}.conv_out.weight".format(tensor_name_prefix_torch): { | |
"name": "{}/cnn_a/conv1d_{}/kernel".format( | |
tensor_name_prefix_tf, self.num_layers | |
), | |
"squeeze": None, | |
"transpose": (2, 1, 0), | |
}, # tf: (1, 256, 256) -> torch: (256, 256, 1) | |
"{}.conv_out.bias".format(tensor_name_prefix_torch): { | |
"name": "{}/cnn_a/conv1d_{}/bias".format( | |
tensor_name_prefix_tf, self.num_layers | |
), | |
"squeeze": None, | |
"transpose": None, | |
}, # tf: (256,) -> torch: (256,) | |
} | |
) | |
return map_dict_local | |
def convert_tf2torch( | |
self, | |
var_dict_tf, | |
var_dict_torch, | |
): | |
map_dict = self.gen_tf2torch_map_dict() | |
var_dict_torch_update = dict() | |
for name in sorted(var_dict_torch.keys(), reverse=False): | |
if name.startswith(self.tf2torch_tensor_name_prefix_torch): | |
# process special (first and last) layers | |
if name in map_dict: | |
name_tf = map_dict[name]["name"] | |
data_tf = var_dict_tf[name_tf] | |
if map_dict[name]["squeeze"] is not None: | |
data_tf = np.squeeze(data_tf, axis=map_dict[name]["squeeze"]) | |
if map_dict[name]["transpose"] is not None: | |
data_tf = np.transpose(data_tf, map_dict[name]["transpose"]) | |
data_tf = torch.from_numpy(data_tf).type(torch.float32).to("cpu") | |
assert ( | |
var_dict_torch[name].size() == data_tf.size() | |
), "{}, {}, {} != {}".format( | |
name, name_tf, var_dict_torch[name].size(), data_tf.size() | |
) | |
var_dict_torch_update[name] = data_tf | |
logging.info( | |
"torch tensor: {}, {}, loading from tf tensor: {}, {}".format( | |
name, data_tf.size(), name_tf, var_dict_tf[name_tf].shape | |
) | |
) | |
# process general layers | |
else: | |
# self.tf2torch_tensor_name_prefix_torch may include ".", solve this case | |
names = name.replace( | |
self.tf2torch_tensor_name_prefix_torch, "todo" | |
).split(".") | |
layeridx = int(names[2]) | |
name_q = name.replace(".{}.".format(layeridx), ".layeridx.") | |
if name_q in map_dict.keys(): | |
name_v = map_dict[name_q]["name"] | |
name_tf = name_v.replace("layeridx", "{}".format(layeridx)) | |
data_tf = var_dict_tf[name_tf] | |
if map_dict[name_q]["squeeze"] is not None: | |
data_tf = np.squeeze( | |
data_tf, axis=map_dict[name_q]["squeeze"] | |
) | |
if map_dict[name_q]["transpose"] is not None: | |
data_tf = np.transpose( | |
data_tf, map_dict[name_q]["transpose"] | |
) | |
data_tf = ( | |
torch.from_numpy(data_tf).type(torch.float32).to("cpu") | |
) | |
assert ( | |
var_dict_torch[name].size() == data_tf.size() | |
), "{}, {}, {} != {}".format( | |
name, name_tf, var_dict_torch[name].size(), data_tf.size() | |
) | |
var_dict_torch_update[name] = data_tf | |
logging.info( | |
"torch tensor: {}, {}, loading from tf tensor: {}, {}".format( | |
name, | |
data_tf.size(), | |
name_tf, | |
var_dict_tf[name_tf].shape, | |
) | |
) | |
else: | |
logging.warning("{} is missed from tf checkpoint".format(name)) | |
return var_dict_torch_update | |