mrfakename's picture
Super-squash branch 'main' using huggingface_hub
0102e16 verified
#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
# MIT License (https://opensource.org/licenses/MIT)
import time
import torch
import logging
from torch.cuda.amp import autocast
from typing import Union, Dict, List, Tuple, Optional
from funasr_detach.register import tables
from funasr_detach.models.ctc.ctc import CTC
from funasr_detach.utils import postprocess_utils
from funasr_detach.metrics.compute_acc import th_accuracy
from funasr_detach.utils.datadir_writer import DatadirWriter
from funasr_detach.models.paraformer.cif_predictor import mae_loss
from funasr_detach.train_utils.device_funcs import force_gatherable
from funasr_detach.losses.label_smoothing_loss import LabelSmoothingLoss
from funasr_detach.models.transformer.utils.add_sos_eos import add_sos_eos
from funasr_detach.models.transformer.utils.nets_utils import make_pad_mask, pad_list
from funasr_detach.utils.load_utils import load_audio_text_image_video, extract_fbank
from funasr_detach.models.scama.utils import sequence_mask
@tables.register("model_classes", "UniASR")
class UniASR(torch.nn.Module):
"""
Author: Speech Lab of DAMO Academy, Alibaba Group
"""
def __init__(
self,
specaug: str = None,
specaug_conf: dict = None,
normalize: str = None,
normalize_conf: dict = None,
encoder: str = None,
encoder_conf: dict = None,
encoder2: str = None,
encoder2_conf: dict = None,
decoder: str = None,
decoder_conf: dict = None,
decoder2: str = None,
decoder2_conf: dict = None,
predictor: str = None,
predictor_conf: dict = None,
predictor_bias: int = 0,
predictor_weight: float = 0.0,
predictor2: str = None,
predictor2_conf: dict = None,
predictor2_bias: int = 0,
predictor2_weight: float = 0.0,
ctc: str = None,
ctc_conf: dict = None,
ctc_weight: float = 0.5,
ctc2: str = None,
ctc2_conf: dict = None,
ctc2_weight: float = 0.5,
decoder_attention_chunk_type: str = "chunk",
decoder_attention_chunk_type2: str = "chunk",
stride_conv=None,
stride_conv_conf: dict = None,
loss_weight_model1: float = 0.5,
input_size: int = 80,
vocab_size: int = -1,
ignore_id: int = -1,
blank_id: int = 0,
sos: int = 1,
eos: int = 2,
lsm_weight: float = 0.0,
length_normalized_loss: bool = False,
share_embedding: bool = False,
**kwargs,
):
super().__init__()
if specaug is not None:
specaug_class = tables.specaug_classes.get(specaug)
specaug = specaug_class(**specaug_conf)
if normalize is not None:
normalize_class = tables.normalize_classes.get(normalize)
normalize = normalize_class(**normalize_conf)
encoder_class = tables.encoder_classes.get(encoder)
encoder = encoder_class(input_size=input_size, **encoder_conf)
encoder_output_size = encoder.output_size()
decoder_class = tables.decoder_classes.get(decoder)
decoder = decoder_class(
vocab_size=vocab_size,
encoder_output_size=encoder_output_size,
**decoder_conf,
)
predictor_class = tables.predictor_classes.get(predictor)
predictor = predictor_class(**predictor_conf)
from funasr_detach.models.transformer.utils.subsampling import Conv1dSubsampling
stride_conv = Conv1dSubsampling(
**stride_conv_conf,
idim=input_size + encoder_output_size,
odim=input_size + encoder_output_size,
)
stride_conv_output_size = stride_conv.output_size()
encoder_class = tables.encoder_classes.get(encoder2)
encoder2 = encoder_class(input_size=stride_conv_output_size, **encoder2_conf)
encoder2_output_size = encoder2.output_size()
decoder_class = tables.decoder_classes.get(decoder2)
decoder2 = decoder_class(
vocab_size=vocab_size,
encoder_output_size=encoder2_output_size,
**decoder2_conf,
)
predictor_class = tables.predictor_classes.get(predictor2)
predictor2 = predictor_class(**predictor2_conf)
self.blank_id = blank_id
self.sos = sos
self.eos = eos
self.vocab_size = vocab_size
self.ignore_id = ignore_id
self.ctc_weight = ctc_weight
self.ctc2_weight = ctc2_weight
self.specaug = specaug
self.normalize = normalize
self.encoder = encoder
self.error_calculator = None
self.decoder = decoder
self.ctc = None
self.ctc2 = None
self.criterion_att = LabelSmoothingLoss(
size=vocab_size,
padding_idx=ignore_id,
smoothing=lsm_weight,
normalize_length=length_normalized_loss,
)
self.predictor = predictor
self.predictor_weight = predictor_weight
self.criterion_pre = mae_loss(normalize_length=length_normalized_loss)
self.encoder1_encoder2_joint_training = kwargs.get(
"encoder1_encoder2_joint_training", True
)
if self.encoder.overlap_chunk_cls is not None:
from funasr_detach.models.scama.chunk_utilis import (
build_scama_mask_for_cross_attention_decoder,
)
self.build_scama_mask_for_cross_attention_decoder_fn = (
build_scama_mask_for_cross_attention_decoder
)
self.decoder_attention_chunk_type = decoder_attention_chunk_type
self.encoder2 = encoder2
self.decoder2 = decoder2
self.ctc2_weight = ctc2_weight
self.predictor2 = predictor2
self.predictor2_weight = predictor2_weight
self.decoder_attention_chunk_type2 = decoder_attention_chunk_type2
self.stride_conv = stride_conv
self.loss_weight_model1 = loss_weight_model1
if self.encoder2.overlap_chunk_cls is not None:
from funasr_detach.models.scama.chunk_utilis import (
build_scama_mask_for_cross_attention_decoder,
)
self.build_scama_mask_for_cross_attention_decoder_fn2 = (
build_scama_mask_for_cross_attention_decoder
)
self.decoder_attention_chunk_type2 = decoder_attention_chunk_type2
self.length_normalized_loss = length_normalized_loss
self.enable_maas_finetune = kwargs.get("enable_maas_finetune", False)
self.freeze_encoder2 = kwargs.get("freeze_encoder2", False)
self.beam_search = None
def forward(
self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
text: torch.Tensor,
text_lengths: torch.Tensor,
**kwargs,
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]:
"""Frontend + Encoder + Decoder + Calc loss
Args:
speech: (Batch, Length, ...)
speech_lengths: (Batch, )
text: (Batch, Length)
text_lengths: (Batch,)
"""
decoding_ind = kwargs.get("decoding_ind", None)
if len(text_lengths.size()) > 1:
text_lengths = text_lengths[:, 0]
if len(speech_lengths.size()) > 1:
speech_lengths = speech_lengths[:, 0]
batch_size = speech.shape[0]
ind = self.encoder.overlap_chunk_cls.random_choice(self.training, decoding_ind)
# 1. Encoder
if self.enable_maas_finetune:
with torch.no_grad():
speech_raw, encoder_out, encoder_out_lens = self.encode(
speech, speech_lengths, ind=ind
)
else:
speech_raw, encoder_out, encoder_out_lens = self.encode(
speech, speech_lengths, ind=ind
)
loss_att, acc_att, cer_att, wer_att = None, None, None, None
loss_ctc, cer_ctc = None, None
stats = dict()
loss_pre = None
loss, loss1, loss2 = 0.0, 0.0, 0.0
if self.loss_weight_model1 > 0.0:
## model1
# 1. CTC branch
if self.enable_maas_finetune:
with torch.no_grad():
loss_att, acc_att, cer_att, wer_att, loss_pre = (
self._calc_att_predictor_loss(
encoder_out, encoder_out_lens, text, text_lengths
)
)
loss = loss_att + loss_pre * self.predictor_weight
# Collect Attn branch stats
stats["loss_att"] = (
loss_att.detach() if loss_att is not None else None
)
stats["acc"] = acc_att
stats["cer"] = cer_att
stats["wer"] = wer_att
stats["loss_pre"] = (
loss_pre.detach().cpu() if loss_pre is not None else None
)
else:
loss_att, acc_att, cer_att, wer_att, loss_pre = (
self._calc_att_predictor_loss(
encoder_out, encoder_out_lens, text, text_lengths
)
)
loss = loss_att + loss_pre * self.predictor_weight
# Collect Attn branch stats
stats["loss_att"] = loss_att.detach() if loss_att is not None else None
stats["acc"] = acc_att
stats["cer"] = cer_att
stats["wer"] = wer_att
stats["loss_pre"] = (
loss_pre.detach().cpu() if loss_pre is not None else None
)
loss1 = loss
if self.loss_weight_model1 < 1.0:
## model2
# encoder2
if self.freeze_encoder2:
with torch.no_grad():
encoder_out, encoder_out_lens = self.encode2(
encoder_out,
encoder_out_lens,
speech_raw,
speech_lengths,
ind=ind,
)
else:
encoder_out, encoder_out_lens = self.encode2(
encoder_out, encoder_out_lens, speech_raw, speech_lengths, ind=ind
)
intermediate_outs = None
if isinstance(encoder_out, tuple):
intermediate_outs = encoder_out[1]
encoder_out = encoder_out[0]
loss_att, acc_att, cer_att, wer_att, loss_pre = (
self._calc_att_predictor_loss2(
encoder_out, encoder_out_lens, text, text_lengths
)
)
loss = loss_att + loss_pre * self.predictor2_weight
# Collect Attn branch stats
stats["loss_att2"] = loss_att.detach() if loss_att is not None else None
stats["acc2"] = acc_att
stats["cer2"] = cer_att
stats["wer2"] = wer_att
stats["loss_pre2"] = (
loss_pre.detach().cpu() if loss_pre is not None else None
)
loss2 = loss
loss = loss1 * self.loss_weight_model1 + loss2 * (1 - self.loss_weight_model1)
stats["loss1"] = torch.clone(loss1.detach())
stats["loss2"] = torch.clone(loss2.detach())
stats["loss"] = torch.clone(loss.detach())
# force_gatherable: to-device and to-tensor if scalar for DataParallel
if self.length_normalized_loss:
batch_size = int((text_lengths + 1).sum())
loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device)
return loss, stats, weight
def collect_feats(
self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
text: torch.Tensor,
text_lengths: torch.Tensor,
) -> Dict[str, torch.Tensor]:
if self.extract_feats_in_collect_stats:
feats, feats_lengths = self._extract_feats(speech, speech_lengths)
else:
# Generate dummy stats if extract_feats_in_collect_stats is False
logging.warning(
"Generating dummy stats for feats and feats_lengths, "
"because encoder_conf.extract_feats_in_collect_stats is "
f"{self.extract_feats_in_collect_stats}"
)
feats, feats_lengths = speech, speech_lengths
return {"feats": feats, "feats_lengths": feats_lengths}
def encode(
self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
**kwargs,
):
"""Frontend + Encoder. Note that this method is used by asr_inference.py
Args:
speech: (Batch, Length, ...)
speech_lengths: (Batch, )
"""
ind = kwargs.get("ind", 0)
with autocast(False):
# Data augmentation
if self.specaug is not None and self.training:
speech, speech_lengths = self.specaug(speech, speech_lengths)
# Normalization for feature: e.g. Global-CMVN, Utterance-CMVN
if self.normalize is not None:
speech, speech_lengths = self.normalize(speech, speech_lengths)
speech_raw = speech.clone().to(speech.device)
# 4. Forward encoder
encoder_out, encoder_out_lens, _ = self.encoder(speech, speech_lengths, ind=ind)
if isinstance(encoder_out, tuple):
encoder_out = encoder_out[0]
return speech_raw, encoder_out, encoder_out_lens
def encode2(
self,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
**kwargs,
):
"""Frontend + Encoder. Note that this method is used by asr_inference.py
Args:
speech: (Batch, Length, ...)
speech_lengths: (Batch, )
"""
ind = kwargs.get("ind", 0)
encoder_out_rm, encoder_out_lens_rm = (
self.encoder.overlap_chunk_cls.remove_chunk(
encoder_out,
encoder_out_lens,
chunk_outs=None,
)
)
# residual_input
encoder_out = torch.cat((speech, encoder_out_rm), dim=-1)
encoder_out_lens = encoder_out_lens_rm
if self.stride_conv is not None:
speech, speech_lengths = self.stride_conv(encoder_out, encoder_out_lens)
if not self.encoder1_encoder2_joint_training:
speech = speech.detach()
speech_lengths = speech_lengths.detach()
# 4. Forward encoder
# feats: (Batch, Length, Dim)
# -> encoder_out: (Batch, Length2, Dim2)
encoder_out, encoder_out_lens, _ = self.encoder2(
speech, speech_lengths, ind=ind
)
if isinstance(encoder_out, tuple):
encoder_out = encoder_out[0]
return encoder_out, encoder_out_lens
def nll(
self,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
ys_pad: torch.Tensor,
ys_pad_lens: torch.Tensor,
) -> torch.Tensor:
"""Compute negative log likelihood(nll) from transformer-decoder
Normally, this function is called in batchify_nll.
Args:
encoder_out: (Batch, Length, Dim)
encoder_out_lens: (Batch,)
ys_pad: (Batch, Length)
ys_pad_lens: (Batch,)
"""
ys_in_pad, ys_out_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id)
ys_in_lens = ys_pad_lens + 1
# 1. Forward decoder
decoder_out, _ = self.decoder(
encoder_out, encoder_out_lens, ys_in_pad, ys_in_lens
) # [batch, seqlen, dim]
batch_size = decoder_out.size(0)
decoder_num_class = decoder_out.size(2)
# nll: negative log-likelihood
nll = torch.nn.functional.cross_entropy(
decoder_out.view(-1, decoder_num_class),
ys_out_pad.view(-1),
ignore_index=self.ignore_id,
reduction="none",
)
nll = nll.view(batch_size, -1)
nll = nll.sum(dim=1)
assert nll.size(0) == batch_size
return nll
def batchify_nll(
self,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
ys_pad: torch.Tensor,
ys_pad_lens: torch.Tensor,
batch_size: int = 100,
):
"""Compute negative log likelihood(nll) from transformer-decoder
To avoid OOM, this fuction seperate the input into batches.
Then call nll for each batch and combine and return results.
Args:
encoder_out: (Batch, Length, Dim)
encoder_out_lens: (Batch,)
ys_pad: (Batch, Length)
ys_pad_lens: (Batch,)
batch_size: int, samples each batch contain when computing nll,
you may change this to avoid OOM or increase
GPU memory usage
"""
total_num = encoder_out.size(0)
if total_num <= batch_size:
nll = self.nll(encoder_out, encoder_out_lens, ys_pad, ys_pad_lens)
else:
nll = []
start_idx = 0
while True:
end_idx = min(start_idx + batch_size, total_num)
batch_encoder_out = encoder_out[start_idx:end_idx, :, :]
batch_encoder_out_lens = encoder_out_lens[start_idx:end_idx]
batch_ys_pad = ys_pad[start_idx:end_idx, :]
batch_ys_pad_lens = ys_pad_lens[start_idx:end_idx]
batch_nll = self.nll(
batch_encoder_out,
batch_encoder_out_lens,
batch_ys_pad,
batch_ys_pad_lens,
)
nll.append(batch_nll)
start_idx = end_idx
if start_idx == total_num:
break
nll = torch.cat(nll)
assert nll.size(0) == total_num
return nll
def _calc_att_loss(
self,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
ys_pad: torch.Tensor,
ys_pad_lens: torch.Tensor,
):
ys_in_pad, ys_out_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id)
ys_in_lens = ys_pad_lens + 1
# 1. Forward decoder
decoder_out, _ = self.decoder(
encoder_out, encoder_out_lens, ys_in_pad, ys_in_lens
)
# 2. Compute attention loss
loss_att = self.criterion_att(decoder_out, ys_out_pad)
acc_att = th_accuracy(
decoder_out.view(-1, self.vocab_size),
ys_out_pad,
ignore_label=self.ignore_id,
)
# Compute cer/wer using attention-decoder
if self.training or self.error_calculator is None:
cer_att, wer_att = None, None
else:
ys_hat = decoder_out.argmax(dim=-1)
cer_att, wer_att = self.error_calculator(ys_hat.cpu(), ys_pad.cpu())
return loss_att, acc_att, cer_att, wer_att
def _calc_att_predictor_loss(
self,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
ys_pad: torch.Tensor,
ys_pad_lens: torch.Tensor,
):
ys_in_pad, ys_out_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id)
ys_in_lens = ys_pad_lens + 1
encoder_out_mask = sequence_mask(
encoder_out_lens,
maxlen=encoder_out.size(1),
dtype=encoder_out.dtype,
device=encoder_out.device,
)[:, None, :]
mask_chunk_predictor = None
if self.encoder.overlap_chunk_cls is not None:
mask_chunk_predictor = (
self.encoder.overlap_chunk_cls.get_mask_chunk_predictor(
None, device=encoder_out.device, batch_size=encoder_out.size(0)
)
)
mask_shfit_chunk = self.encoder.overlap_chunk_cls.get_mask_shfit_chunk(
None, device=encoder_out.device, batch_size=encoder_out.size(0)
)
encoder_out = encoder_out * mask_shfit_chunk
pre_acoustic_embeds, pre_token_length, pre_alphas, _ = self.predictor(
encoder_out,
ys_out_pad,
encoder_out_mask,
ignore_id=self.ignore_id,
mask_chunk_predictor=mask_chunk_predictor,
target_label_length=ys_in_lens,
)
predictor_alignments, predictor_alignments_len = (
self.predictor.gen_frame_alignments(pre_alphas, encoder_out_lens)
)
scama_mask = None
if (
self.encoder.overlap_chunk_cls is not None
and self.decoder_attention_chunk_type == "chunk"
):
encoder_chunk_size = self.encoder.overlap_chunk_cls.chunk_size_pad_shift_cur
attention_chunk_center_bias = 0
attention_chunk_size = encoder_chunk_size
decoder_att_look_back_factor = (
self.encoder.overlap_chunk_cls.decoder_att_look_back_factor_cur
)
mask_shift_att_chunk_decoder = (
self.encoder.overlap_chunk_cls.get_mask_shift_att_chunk_decoder(
None, device=encoder_out.device, batch_size=encoder_out.size(0)
)
)
scama_mask = self.build_scama_mask_for_cross_attention_decoder_fn(
predictor_alignments=predictor_alignments,
encoder_sequence_length=encoder_out_lens,
chunk_size=1,
encoder_chunk_size=encoder_chunk_size,
attention_chunk_center_bias=attention_chunk_center_bias,
attention_chunk_size=attention_chunk_size,
attention_chunk_type=self.decoder_attention_chunk_type,
step=None,
predictor_mask_chunk_hopping=mask_chunk_predictor,
decoder_att_look_back_factor=decoder_att_look_back_factor,
mask_shift_att_chunk_decoder=mask_shift_att_chunk_decoder,
target_length=ys_in_lens,
is_training=self.training,
)
elif self.encoder.overlap_chunk_cls is not None:
encoder_out, encoder_out_lens = self.encoder.overlap_chunk_cls.remove_chunk(
encoder_out, encoder_out_lens, chunk_outs=None
)
# try:
# 1. Forward decoder
decoder_out, _ = self.decoder(
encoder_out,
encoder_out_lens,
ys_in_pad,
ys_in_lens,
chunk_mask=scama_mask,
pre_acoustic_embeds=pre_acoustic_embeds,
)
# 2. Compute attention loss
loss_att = self.criterion_att(decoder_out, ys_out_pad)
acc_att = th_accuracy(
decoder_out.view(-1, self.vocab_size),
ys_out_pad,
ignore_label=self.ignore_id,
)
# predictor loss
loss_pre = self.criterion_pre(
ys_in_lens.type_as(pre_token_length), pre_token_length
)
# Compute cer/wer using attention-decoder
if self.training or self.error_calculator is None:
cer_att, wer_att = None, None
else:
ys_hat = decoder_out.argmax(dim=-1)
cer_att, wer_att = self.error_calculator(ys_hat.cpu(), ys_pad.cpu())
return loss_att, acc_att, cer_att, wer_att, loss_pre
def _calc_att_predictor_loss2(
self,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
ys_pad: torch.Tensor,
ys_pad_lens: torch.Tensor,
):
ys_in_pad, ys_out_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id)
ys_in_lens = ys_pad_lens + 1
encoder_out_mask = sequence_mask(
encoder_out_lens,
maxlen=encoder_out.size(1),
dtype=encoder_out.dtype,
device=encoder_out.device,
)[:, None, :]
mask_chunk_predictor = None
if self.encoder2.overlap_chunk_cls is not None:
mask_chunk_predictor = (
self.encoder2.overlap_chunk_cls.get_mask_chunk_predictor(
None, device=encoder_out.device, batch_size=encoder_out.size(0)
)
)
mask_shfit_chunk = self.encoder2.overlap_chunk_cls.get_mask_shfit_chunk(
None, device=encoder_out.device, batch_size=encoder_out.size(0)
)
encoder_out = encoder_out * mask_shfit_chunk
pre_acoustic_embeds, pre_token_length, pre_alphas, _ = self.predictor2(
encoder_out,
ys_out_pad,
encoder_out_mask,
ignore_id=self.ignore_id,
mask_chunk_predictor=mask_chunk_predictor,
target_label_length=ys_in_lens,
)
predictor_alignments, predictor_alignments_len = (
self.predictor2.gen_frame_alignments(pre_alphas, encoder_out_lens)
)
scama_mask = None
if (
self.encoder2.overlap_chunk_cls is not None
and self.decoder_attention_chunk_type2 == "chunk"
):
encoder_chunk_size = (
self.encoder2.overlap_chunk_cls.chunk_size_pad_shift_cur
)
attention_chunk_center_bias = 0
attention_chunk_size = encoder_chunk_size
decoder_att_look_back_factor = (
self.encoder2.overlap_chunk_cls.decoder_att_look_back_factor_cur
)
mask_shift_att_chunk_decoder = (
self.encoder2.overlap_chunk_cls.get_mask_shift_att_chunk_decoder(
None, device=encoder_out.device, batch_size=encoder_out.size(0)
)
)
scama_mask = self.build_scama_mask_for_cross_attention_decoder_fn2(
predictor_alignments=predictor_alignments,
encoder_sequence_length=encoder_out_lens,
chunk_size=1,
encoder_chunk_size=encoder_chunk_size,
attention_chunk_center_bias=attention_chunk_center_bias,
attention_chunk_size=attention_chunk_size,
attention_chunk_type=self.decoder_attention_chunk_type2,
step=None,
predictor_mask_chunk_hopping=mask_chunk_predictor,
decoder_att_look_back_factor=decoder_att_look_back_factor,
mask_shift_att_chunk_decoder=mask_shift_att_chunk_decoder,
target_length=ys_in_lens,
is_training=self.training,
)
elif self.encoder2.overlap_chunk_cls is not None:
encoder_out, encoder_out_lens = (
self.encoder2.overlap_chunk_cls.remove_chunk(
encoder_out, encoder_out_lens, chunk_outs=None
)
)
# try:
# 1. Forward decoder
decoder_out, _ = self.decoder2(
encoder_out,
encoder_out_lens,
ys_in_pad,
ys_in_lens,
chunk_mask=scama_mask,
pre_acoustic_embeds=pre_acoustic_embeds,
)
# 2. Compute attention loss
loss_att = self.criterion_att(decoder_out, ys_out_pad)
acc_att = th_accuracy(
decoder_out.view(-1, self.vocab_size),
ys_out_pad,
ignore_label=self.ignore_id,
)
# predictor loss
loss_pre = self.criterion_pre(
ys_in_lens.type_as(pre_token_length), pre_token_length
)
# Compute cer/wer using attention-decoder
if self.training or self.error_calculator is None:
cer_att, wer_att = None, None
else:
ys_hat = decoder_out.argmax(dim=-1)
cer_att, wer_att = self.error_calculator(ys_hat.cpu(), ys_pad.cpu())
return loss_att, acc_att, cer_att, wer_att, loss_pre
def calc_predictor_mask(
self,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
ys_pad: torch.Tensor = None,
ys_pad_lens: torch.Tensor = None,
):
# ys_in_pad, ys_out_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id)
# ys_in_lens = ys_pad_lens + 1
ys_out_pad, ys_in_lens = None, None
encoder_out_mask = sequence_mask(
encoder_out_lens,
maxlen=encoder_out.size(1),
dtype=encoder_out.dtype,
device=encoder_out.device,
)[:, None, :]
mask_chunk_predictor = None
if self.encoder.overlap_chunk_cls is not None:
mask_chunk_predictor = (
self.encoder.overlap_chunk_cls.get_mask_chunk_predictor(
None, device=encoder_out.device, batch_size=encoder_out.size(0)
)
)
mask_shfit_chunk = self.encoder.overlap_chunk_cls.get_mask_shfit_chunk(
None, device=encoder_out.device, batch_size=encoder_out.size(0)
)
encoder_out = encoder_out * mask_shfit_chunk
pre_acoustic_embeds, pre_token_length, pre_alphas, _ = self.predictor(
encoder_out,
ys_out_pad,
encoder_out_mask,
ignore_id=self.ignore_id,
mask_chunk_predictor=mask_chunk_predictor,
target_label_length=ys_in_lens,
)
predictor_alignments, predictor_alignments_len = (
self.predictor.gen_frame_alignments(pre_alphas, encoder_out_lens)
)
scama_mask = None
if (
self.encoder.overlap_chunk_cls is not None
and self.decoder_attention_chunk_type == "chunk"
):
encoder_chunk_size = self.encoder.overlap_chunk_cls.chunk_size_pad_shift_cur
attention_chunk_center_bias = 0
attention_chunk_size = encoder_chunk_size
decoder_att_look_back_factor = (
self.encoder.overlap_chunk_cls.decoder_att_look_back_factor_cur
)
mask_shift_att_chunk_decoder = (
self.encoder.overlap_chunk_cls.get_mask_shift_att_chunk_decoder(
None, device=encoder_out.device, batch_size=encoder_out.size(0)
)
)
scama_mask = self.build_scama_mask_for_cross_attention_decoder_fn(
predictor_alignments=predictor_alignments,
encoder_sequence_length=encoder_out_lens,
chunk_size=1,
encoder_chunk_size=encoder_chunk_size,
attention_chunk_center_bias=attention_chunk_center_bias,
attention_chunk_size=attention_chunk_size,
attention_chunk_type=self.decoder_attention_chunk_type,
step=None,
predictor_mask_chunk_hopping=mask_chunk_predictor,
decoder_att_look_back_factor=decoder_att_look_back_factor,
mask_shift_att_chunk_decoder=mask_shift_att_chunk_decoder,
target_length=ys_in_lens,
is_training=self.training,
)
elif self.encoder.overlap_chunk_cls is not None:
encoder_out, encoder_out_lens = self.encoder.overlap_chunk_cls.remove_chunk(
encoder_out, encoder_out_lens, chunk_outs=None
)
return (
pre_acoustic_embeds,
pre_token_length,
predictor_alignments,
predictor_alignments_len,
scama_mask,
)
def calc_predictor_mask2(
self,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
ys_pad: torch.Tensor = None,
ys_pad_lens: torch.Tensor = None,
):
# ys_in_pad, ys_out_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id)
# ys_in_lens = ys_pad_lens + 1
ys_out_pad, ys_in_lens = None, None
encoder_out_mask = sequence_mask(
encoder_out_lens,
maxlen=encoder_out.size(1),
dtype=encoder_out.dtype,
device=encoder_out.device,
)[:, None, :]
mask_chunk_predictor = None
if self.encoder2.overlap_chunk_cls is not None:
mask_chunk_predictor = (
self.encoder2.overlap_chunk_cls.get_mask_chunk_predictor(
None, device=encoder_out.device, batch_size=encoder_out.size(0)
)
)
mask_shfit_chunk = self.encoder2.overlap_chunk_cls.get_mask_shfit_chunk(
None, device=encoder_out.device, batch_size=encoder_out.size(0)
)
encoder_out = encoder_out * mask_shfit_chunk
pre_acoustic_embeds, pre_token_length, pre_alphas, _ = self.predictor2(
encoder_out,
ys_out_pad,
encoder_out_mask,
ignore_id=self.ignore_id,
mask_chunk_predictor=mask_chunk_predictor,
target_label_length=ys_in_lens,
)
predictor_alignments, predictor_alignments_len = (
self.predictor2.gen_frame_alignments(pre_alphas, encoder_out_lens)
)
scama_mask = None
if (
self.encoder2.overlap_chunk_cls is not None
and self.decoder_attention_chunk_type2 == "chunk"
):
encoder_chunk_size = (
self.encoder2.overlap_chunk_cls.chunk_size_pad_shift_cur
)
attention_chunk_center_bias = 0
attention_chunk_size = encoder_chunk_size
decoder_att_look_back_factor = (
self.encoder2.overlap_chunk_cls.decoder_att_look_back_factor_cur
)
mask_shift_att_chunk_decoder = (
self.encoder2.overlap_chunk_cls.get_mask_shift_att_chunk_decoder(
None, device=encoder_out.device, batch_size=encoder_out.size(0)
)
)
scama_mask = self.build_scama_mask_for_cross_attention_decoder_fn2(
predictor_alignments=predictor_alignments,
encoder_sequence_length=encoder_out_lens,
chunk_size=1,
encoder_chunk_size=encoder_chunk_size,
attention_chunk_center_bias=attention_chunk_center_bias,
attention_chunk_size=attention_chunk_size,
attention_chunk_type=self.decoder_attention_chunk_type2,
step=None,
predictor_mask_chunk_hopping=mask_chunk_predictor,
decoder_att_look_back_factor=decoder_att_look_back_factor,
mask_shift_att_chunk_decoder=mask_shift_att_chunk_decoder,
target_length=ys_in_lens,
is_training=self.training,
)
elif self.encoder2.overlap_chunk_cls is not None:
encoder_out, encoder_out_lens = (
self.encoder2.overlap_chunk_cls.remove_chunk(
encoder_out, encoder_out_lens, chunk_outs=None
)
)
return (
pre_acoustic_embeds,
pre_token_length,
predictor_alignments,
predictor_alignments_len,
scama_mask,
)
def init_beam_search(
self,
**kwargs,
):
from funasr_detach.models.uniasr.beam_search import BeamSearchScama
from funasr_detach.models.transformer.scorers.ctc import CTCPrefixScorer
from funasr_detach.models.transformer.scorers.length_bonus import LengthBonus
decoding_mode = kwargs.get("decoding_mode", "model1")
if decoding_mode == "model1":
decoder = self.decoder
else:
decoder = self.decoder2
# 1. Build ASR model
scorers = {}
if self.ctc != None:
ctc = CTCPrefixScorer(ctc=self.ctc, eos=self.eos)
scorers.update(ctc=ctc)
token_list = kwargs.get("token_list")
scorers.update(
decoder=decoder,
length_bonus=LengthBonus(len(token_list)),
)
# 3. Build ngram model
# ngram is not supported now
ngram = None
scorers["ngram"] = ngram
weights = dict(
decoder=1.0 - kwargs.get("decoding_ctc_weight", 0.0),
ctc=kwargs.get("decoding_ctc_weight", 0.0),
lm=kwargs.get("lm_weight", 0.0),
ngram=kwargs.get("ngram_weight", 0.0),
length_bonus=kwargs.get("penalty", 0.0),
)
beam_search = BeamSearchScama(
beam_size=kwargs.get("beam_size", 5),
weights=weights,
scorers=scorers,
sos=self.sos,
eos=self.eos,
vocab_size=len(token_list),
token_list=token_list,
pre_beam_score_key=None if self.ctc_weight == 1.0 else "full",
)
self.beam_search = beam_search
def inference(
self,
data_in,
data_lengths=None,
key: list = None,
tokenizer=None,
frontend=None,
**kwargs,
):
decoding_model = kwargs.get("decoding_model", "normal")
token_num_relax = kwargs.get("token_num_relax", 5)
if decoding_model == "fast":
decoding_ind = 0
decoding_mode = "model1"
elif decoding_model == "offline":
decoding_ind = 1
decoding_mode = "model2"
else:
decoding_ind = 0
decoding_mode = "model2"
# init beamsearch
if self.beam_search is None:
logging.info("enable beam_search")
self.init_beam_search(decoding_mode=decoding_mode, **kwargs)
self.nbest = kwargs.get("nbest", 1)
meta_data = {}
if (
isinstance(data_in, torch.Tensor)
and kwargs.get("data_type", "sound") == "fbank"
): # fbank
speech, speech_lengths = data_in, data_lengths
if len(speech.shape) < 3:
speech = speech[None, :, :]
if speech_lengths is None:
speech_lengths = speech.shape[1]
else:
# extract fbank feats
time1 = time.perf_counter()
audio_sample_list = load_audio_text_image_video(
data_in,
fs=frontend.fs,
audio_fs=kwargs.get("fs", 16000),
data_type=kwargs.get("data_type", "sound"),
tokenizer=tokenizer,
)
time2 = time.perf_counter()
meta_data["load_data"] = f"{time2 - time1:0.3f}"
speech, speech_lengths = extract_fbank(
audio_sample_list,
data_type=kwargs.get("data_type", "sound"),
frontend=frontend,
)
time3 = time.perf_counter()
meta_data["extract_feat"] = f"{time3 - time2:0.3f}"
meta_data["batch_data_time"] = (
speech_lengths.sum().item()
* frontend.frame_shift
* frontend.lfr_n
/ 1000
)
speech = speech.to(device=kwargs["device"])
speech_lengths = speech_lengths.to(device=kwargs["device"])
speech_raw = speech.clone().to(device=kwargs["device"])
# Encoder
_, encoder_out, encoder_out_lens = self.encode(
speech, speech_lengths, ind=decoding_ind
)
if decoding_mode == "model1":
predictor_outs = self.calc_predictor_mask(encoder_out, encoder_out_lens)
else:
encoder_out, encoder_out_lens = self.encode2(
encoder_out,
encoder_out_lens,
speech_raw,
speech_lengths,
ind=decoding_ind,
)
predictor_outs = self.calc_predictor_mask2(encoder_out, encoder_out_lens)
scama_mask = predictor_outs[4]
pre_token_length = predictor_outs[1]
pre_acoustic_embeds = predictor_outs[0]
maxlen = pre_token_length.sum().item() + token_num_relax
minlen = max(0, pre_token_length.sum().item() - token_num_relax)
# c. Passed the encoder result and the beam search
nbest_hyps = self.beam_search(
x=encoder_out[0],
scama_mask=scama_mask,
pre_acoustic_embeds=pre_acoustic_embeds,
maxlenratio=0.0,
minlenratio=0.0,
maxlen=int(maxlen),
minlen=int(minlen),
)
nbest_hyps = nbest_hyps[: self.nbest]
results = []
for hyp in nbest_hyps:
# remove sos/eos and get results
last_pos = -1
if isinstance(hyp.yseq, list):
token_int = hyp.yseq[1:last_pos]
else:
token_int = hyp.yseq[1:last_pos].tolist()
# remove blank symbol id, which is assumed to be 0
token_int = list(filter(lambda x: x != 0, token_int))
# Change integer-ids to tokens
token = tokenizer.ids2tokens(token_int)
text_postprocessed = tokenizer.tokens2text(token)
if not hasattr(tokenizer, "bpemodel"):
text_postprocessed, _ = postprocess_utils.sentence_postprocess(token)
result_i = {"key": key[0], "text": text_postprocessed}
results.append(result_i)
return results, meta_data