|
import gradio as gr |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import torch |
|
|
|
|
|
model_name = "meta-llama/Llama-2-7b-hf" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, device_map="auto", torch_dtype=torch.float16 |
|
) |
|
|
|
|
|
def generate_response(prompt): |
|
inputs = tokenizer(prompt, return_tensors="pt").to("cuda") |
|
outputs = model.generate(inputs.input_ids, max_length=200, temperature=0.7) |
|
return tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
|
|
demo = gr.Interface( |
|
fn=generate_response, |
|
inputs="text", |
|
outputs="text", |
|
title="Llama Chatbot", |
|
description="Chatbot Llama-2-7b-hf", |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|