msa17 commited on
Commit
58baab8
·
verified ·
1 Parent(s): 2e641aa

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -15
app.py CHANGED
@@ -30,13 +30,12 @@ county_count.columns = ['County', 'Building Count']
30
 
31
  county_chart = alt.Chart(county_count).mark_bar(color='teal').encode(
32
  alt.X('Building Count:Q', title='Number of Buildings'),
33
- alt.Y('County:N', sort='-x', title='County'),
34
- tooltip=['County', 'Building Count']
35
  ).properties(
36
  width=700,
37
  height=400,
38
  title='Number of Buildings per County'
39
- ).interactive()
40
 
41
  st.altair_chart(county_chart, use_container_width=True)
42
 
@@ -47,17 +46,13 @@ This bar chart illustrates the number of buildings in each county, highlighting
47
  - A horizontal bar chart is used to accommodate long county names and facilitate easy comparison.
48
  - Counties are sorted in descending order based on building count to emphasize those with the most buildings.
49
  - The teal color provides a calm and professional appearance.
50
- - Interactive tooltips offer precise counts upon hovering.
51
  - **Potential Improvements**:
52
  - Incorporate filters to allow users to focus on specific regions or agencies.
53
  - Add a map visualization to provide spatial context to the data.
54
  """)
55
 
56
  # Visualization 2: Year-wise Construction of Buildings
57
- # Data Preprocessing for Year-wise Construction Visualization
58
- # Convert 'Year Constructed' to numeric, handling errors
59
- data['Year Constructed'] = pd.to_numeric(data['Year Constructed'], errors='coerce')
60
-
61
  # Filter out rows where 'Year Constructed' is 0 or NaN
62
  data_filtered = data[(data['Year Constructed'] > 0) & (~data['Year Constructed'].isna())]
63
 
@@ -66,17 +61,14 @@ yearly_construction = data_filtered['Year Constructed'].value_counts().reset_ind
66
  yearly_construction.columns = ['Year Constructed', 'Building Count']
67
  yearly_construction = yearly_construction.sort_values('Year Constructed')
68
 
69
- # Visualization: Year-wise Construction of Buildings
70
- st.header("2. Year-wise Construction of Buildings")
71
  year_chart = alt.Chart(yearly_construction).mark_line(point=True, color='orange').encode(
72
  alt.X('Year Constructed:Q', title='Year Constructed'),
73
- alt.Y('Building Count:Q', title='Number of Buildings'),
74
- tooltip=['Year Constructed', 'Building Count']
75
  ).properties(
76
  width=700,
77
  height=400,
78
  title='Number of Buildings Constructed Over Time'
79
- ).interactive()
80
 
81
  st.altair_chart(year_chart, use_container_width=True)
82
 
@@ -87,13 +79,11 @@ This line chart displays the number of buildings constructed each year, revealin
87
  - A line chart effectively shows changes over time and highlights trends.
88
  - Data points are marked to emphasize individual years.
89
  - The orange color draws attention to the trend line.
90
- - Interactive tooltips provide exact counts for each year.
91
  - **Potential Improvements**:
92
  - Implement a rolling average to smooth out year-to-year fluctuations.
93
  - Allow users to filter the data by building type or agency to explore specific trends.
94
  """)
95
 
96
-
97
  # Footer
98
  st.markdown("""
99
  ---
 
30
 
31
  county_chart = alt.Chart(county_count).mark_bar(color='teal').encode(
32
  alt.X('Building Count:Q', title='Number of Buildings'),
33
+ alt.Y('County:N', sort='-x', title='County')
 
34
  ).properties(
35
  width=700,
36
  height=400,
37
  title='Number of Buildings per County'
38
+ )
39
 
40
  st.altair_chart(county_chart, use_container_width=True)
41
 
 
46
  - A horizontal bar chart is used to accommodate long county names and facilitate easy comparison.
47
  - Counties are sorted in descending order based on building count to emphasize those with the most buildings.
48
  - The teal color provides a calm and professional appearance.
 
49
  - **Potential Improvements**:
50
  - Incorporate filters to allow users to focus on specific regions or agencies.
51
  - Add a map visualization to provide spatial context to the data.
52
  """)
53
 
54
  # Visualization 2: Year-wise Construction of Buildings
55
+ st.header("2. Year-wise Construction of Buildings")
 
 
 
56
  # Filter out rows where 'Year Constructed' is 0 or NaN
57
  data_filtered = data[(data['Year Constructed'] > 0) & (~data['Year Constructed'].isna())]
58
 
 
61
  yearly_construction.columns = ['Year Constructed', 'Building Count']
62
  yearly_construction = yearly_construction.sort_values('Year Constructed')
63
 
 
 
64
  year_chart = alt.Chart(yearly_construction).mark_line(point=True, color='orange').encode(
65
  alt.X('Year Constructed:Q', title='Year Constructed'),
66
+ alt.Y('Building Count:Q', title='Number of Buildings')
 
67
  ).properties(
68
  width=700,
69
  height=400,
70
  title='Number of Buildings Constructed Over Time'
71
+ )
72
 
73
  st.altair_chart(year_chart, use_container_width=True)
74
 
 
79
  - A line chart effectively shows changes over time and highlights trends.
80
  - Data points are marked to emphasize individual years.
81
  - The orange color draws attention to the trend line.
 
82
  - **Potential Improvements**:
83
  - Implement a rolling average to smooth out year-to-year fluctuations.
84
  - Allow users to filter the data by building type or agency to explore specific trends.
85
  """)
86
 
 
87
  # Footer
88
  st.markdown("""
89
  ---