File size: 18,484 Bytes
26fd00c 80cee96 26fd00c 80cee96 26fd00c 7f260ad 26fd00c 80cee96 26fd00c 7f260ad 80cee96 7f260ad 26fd00c 7f260ad 7a334a5 7f260ad 80cee96 7f260ad 7a334a5 7f260ad 7a334a5 7f260ad 7a334a5 7f260ad 26fd00c 7f260ad 26fd00c 335bb2c 26fd00c 335bb2c 26fd00c f69cdac 7f260ad 26fd00c 80cee96 26fd00c 402d77e 7f260ad 26fd00c 80cee96 26fd00c 7f260ad 26fd00c c148114 26fd00c c148114 26fd00c 80cee96 26fd00c 961d6ba 26fd00c 961d6ba 26fd00c 80cee96 26fd00c 80cee96 26fd00c 80cee96 26fd00c 80cee96 26fd00c 80cee96 26fd00c f508895 167d17a 9223ee5 26fd00c a8b4dfe 26fd00c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 |
import os
os.system('cd fairseq;'
'pip install ./; cd ..')
os.system('ls -l')
import torch
import numpy as np
import gradio as gr
import cv2
from PIL import Image
from torchvision import transforms
from fairseq import utils, tasks, options
from fairseq import checkpoint_utils
from fairseq.dataclass.utils import convert_namespace_to_omegaconf
from tasks.mm_tasks.caption import CaptionTask
from tasks.mm_tasks.refcoco import RefcocoTask
from tasks.mm_tasks.vqa_gen import VqaGenTask
# video
from data.video_utils import VIDEO_READER_FUNCS
# audio
import torchaudio
from data.audio_utils import get_audio_features, int16_to_float32, float32_to_int16, AUDIO_CFG
def move2gpu(models, cfg):
for model in models:
model.eval()
if use_fp16:
model.half()
if use_cuda and not cfg.distributed_training.pipeline_model_parallel:
model.cuda()
model.prepare_for_inference_(cfg)
def construct_transform(patch_image_size):
mean = [0.5, 0.5, 0.5]
std = [0.5, 0.5, 0.5]
patch_resize_transform = transforms.Compose([
lambda image: image.convert("RGB"),
transforms.Resize((patch_image_size, patch_image_size), interpolation=Image.BICUBIC),
transforms.ToTensor(),
transforms.Normalize(mean=mean, std=std),
])
return patch_resize_transform
# Register tasks
tasks.register_task('caption', CaptionTask)
tasks.register_task('refcoco', RefcocoTask)
tasks.register_task('vqa_gen', VqaGenTask)
tasks.register_task('video_caption', CaptionTask)
tasks.register_task('audio_caption', CaptionTask)
# turn on cuda if GPU is available
use_cuda = torch.cuda.is_available()
# use fp16 only when GPU is available
use_fp16 = False
# download checkpoints
os.system('mkdir -p checkpoints; ')
# os.system('wget https://data.isir.upmc.fr/unival/models/unival_s2_hs/checkpoint1.pt; '
# 'mkdir -p checkpoints/unival_s2_hs; mv checkpoint1.pt checkpoints/unival_s2_hs/')
os.system('wget https://data.isir.upmc.fr/unival/models/unival_vqa/checkpoint_best.pt; '
'mkdir -p checkpoints/unival_vqa; mv checkpoint_best.pt checkpoints/unival_vqa/')
# os.system('wget https://data.isir.upmc.fr/unival/models/unival_caption_stage_1/checkpoint_best_test.pt; '
# 'mkdir -p checkpoints/unival_caption_stage_1; mv checkpoint_best_test.pt checkpoints/unival_caption_stage_1/')
# os.system('wget https://data.isir.upmc.fr/unival/models/unival_refcocog/checkpoint_best.pt; '
# 'mkdir -p checkpoints/unival_refcocog; mv checkpoint_best.pt checkpoints/unival_refcocog/')
# os.system('wget https://data.isir.upmc.fr/unival/models/unival_video_caption_stage_1/checkpoint_best.pt; '
# 'mkdir -p checkpoints/unival_video_caption_stage_1; mv checkpoint_best.pt checkpoints/unival_video_caption_stage_1/')
# os.system('wget https://data.isir.upmc.fr/unival/models/unival_audio_caption/checkpoint_best.pt; '
# 'mkdir -p checkpoints/unival_audio_caption; mv checkpoint_best.pt checkpoints/unival_audio_caption/')
# Load ckpt & config for Image Captioning
checkpoint_path = 'checkpoints/unival_caption_stage_1/checkpoint_best_test.pt'
caption_overrides={"eval_cider":False, "beam":5, "max_len_b":22, "no_repeat_ngram_size":3, "seed":7, "unnormalized": False,
"bpe_dir":"utils/BPE", "video_model_path": None, "video_model_path": None, "resnet_model_path": None}
caption_models, caption_cfg, caption_task = checkpoint_utils.load_model_ensemble_and_task(
utils.split_paths(checkpoint_path),
arg_overrides=caption_overrides
)
# Load ckpt & config for Video Captioning
checkpoint_path = 'checkpoints/unival_video_caption_stage_1/checkpoint_best.p'
caption_overrides={"eval_cider":False, "beam":5, "max_len_b":22, "no_repeat_ngram_size":3, "seed":7, "unnormalized": False,
"bpe_dir":"utils/BPE", "video_model_path": None, "video_model_path": None, "resnet_model_path": None}
video_caption_models, video_caption_cfg, video_caption_task = checkpoint_utils.load_model_ensemble_and_task(
utils.split_paths(checkpoint_path),
arg_overrides=caption_overrides
)
# Load ckpt & config for Audio Captioning
checkpoint_path = 'checkpoints/unival_audio_caption/checkpoint_best.pt'
caption_overrides={"eval_cider":False, "beam":5, "max_len_b":22, "no_repeat_ngram_size":3, "seed":7, "unnormalized": False,
"bpe_dir":"utils/BPE", "video_model_path": None, "video_model_path": None, "resnet_model_path": None, "audio_model_path": None}
audio_caption_models, audio_caption_cfg, audio_caption_task = checkpoint_utils.load_model_ensemble_and_task(
utils.split_paths(checkpoint_path),
arg_overrides=caption_overrides
)
# Load ckpt & config for Refcoco
checkpoint_path = 'checkpoints/unival_refcocog/checkpoint_best.pt'
refcoco_overrides = {"bpe_dir":"utils/BPE", "video_model_path": None, "resnet_model_path": None}
refcoco_models, refcoco_cfg, refcoco_task = checkpoint_utils.load_model_ensemble_and_task(
utils.split_paths(checkpoint_path),
arg_overrides=refcoco_overrides
)
refcoco_cfg.common.seed = 7
refcoco_cfg.generation.beam = 5
refcoco_cfg.generation.min_len = 4
refcoco_cfg.generation.max_len_a = 0
refcoco_cfg.generation.max_len_b = 4
refcoco_cfg.generation.no_repeat_ngram_size = 3
# Load pretrained ckpt & config for VQA
checkpoint_path = 'checkpoints/unival_vqa/checkpoint_best.pt'
overrides={"video_model_path": None, "resnet_model_path": None}
parser = options.get_generation_parser()
input_args = ["", "--task=vqa_gen", "--beam=100", "--unnormalized", f"--path={checkpoint_path}", "--bpe-dir=utils/BPE"]
args = options.parse_args_and_arch(parser, input_args)
vqa_cfg = convert_namespace_to_omegaconf(args)
vqa_task = tasks.setup_task(vqa_cfg.task)
vqa_models, vqa_cfg = checkpoint_utils.load_model_ensemble(
utils.split_paths(vqa_cfg.common_eval.path),
task=vqa_task,
arg_overrides=overrides
)
# Load pretrained ckpt & config for Generic Interface
checkpoint_path = 'checkpoints/unival_s2_hs/checkpoint1.pt'
parser = options.get_generation_parser()
input_args = ["", "--task=refcoco", "--beam=10", f"--path={checkpoint_path}", "--bpe-dir=utils/BPE", "--no-repeat-ngram-size=3", "--patch-image-size=384"]
args = options.parse_args_and_arch(parser, input_args)
general_cfg = convert_namespace_to_omegaconf(args)
general_task = tasks.setup_task(general_cfg.task)
overrides={"video_model_path": None, "resnet_model_path": None}
general_models, general_cfg = checkpoint_utils.load_model_ensemble(
utils.split_paths(general_cfg.common_eval.path),
task=general_task,
arg_overrides=overrides
)
# move models to gpu
move2gpu(caption_models, caption_cfg)
move2gpu(refcoco_models, refcoco_cfg)
move2gpu(vqa_models, vqa_cfg)
move2gpu(general_models, general_cfg)
move2gpu(video_caption_models, general_cfg)
move2gpu(audio_general_models, general_cfg)
# # Initialize generator
caption_generator = caption_task.build_generator(caption_models, caption_cfg.generation)
refcoco_generator = refcoco_task.build_generator(refcoco_models, refcoco_cfg.generation)
vqa_generator = vqa_task.build_generator(vqa_models, vqa_cfg.generation)
vqa_generator.zero_shot = True
vqa_generator.constraint_trie = None
general_generator = general_task.build_generator(general_models, general_cfg.generation)
video_caption_generator = caption_task.build_generator(video_caption_models, video_caption_cfg.generation)
audio_caption_generator = caption_task.build_generator(audio_caption_models, audio_caption_cfg.generation)
# Construct image transforms
caption_transform = construct_transform(caption_cfg.task.patch_image_size)
refcoco_transform = construct_transform(refcoco_cfg.task.patch_image_size)
vqa_transform = construct_transform(vqa_cfg.task.patch_image_size)
general_transform = construct_transform(general_cfg.task.patch_image_size)
# Text preprocess
bos_item = torch.LongTensor([general_task.src_dict.bos()])
eos_item = torch.LongTensor([general_task.src_dict.eos()])
pad_idx = general_task.src_dict.pad()
# Video process
type_transform = transforms.Lambda(lambda x: x.float().div(255.0))
patch_video_resize_transform = transforms.Compose([
transforms.CenterCrop(cfg.task.patch_frame_size),
type_transform,
transforms.Normalize(mean=mean, std=std),
])
# video process
video_reader = VIDEO_READER_FUNCS['decord']
def process_video(video_path, max_num_frames=16, num_frames=16, sample_type='rand',):
# video
data_path = os.path.join(video_path)
frames, frame_indices, video_duration = video_reader(
data_path, num_frames, sample_type, max_num_frames=max_num_frames
)
patch_video = patch_video_resize_transform(frames)
patch_video = patch_video.permute(1, 0, 2, 3) # -> (C, T, h, w)
return patch_video.unsqueeze(0)
def construct_video_sample(video_path):
patch_video = process_video(video_path, max_num_frames=16, num_frames=cfg.task.num_frames, sample_type=cfg.task.sample_type,)
patch_image = torch.zeros((3, cfg.task.patch_image_size, cfg.task.patch_image_size))
patch_type = torch.tensor([1])
patch_mask = torch.tensor([True])
src_text = encode_text(" what does the video describe?", append_bos=True, append_eos=True).unsqueeze(0)
src_length = torch.LongTensor([s.ne(pad_idx).long().sum() for s in src_text])
sample = {
"id":np.array(['42']),
"net_input": {
"src_tokens": src_text,
"src_lengths": src_length,
"patch_videos": patch_video,
"patch_images": patch_image,
"patch_masks": patch_mask,
"patch_types": patch_type,
}
}
return sample
#####
# audio process
mean = [0.5, 0.5, 0.5]
std = [0.5, 0.5, 0.5]
def process_audio(audio_path, sample_rate=48000, max_audio_len=480000, audio_cfg=AUDIO_CFG):
# audio
data_path = audio_path
audio_data, orig_sr = torchaudio.load(data_path)
audio_data = torchaudio.transforms.Resample(orig_sr, sample_rate)(audio_data[0])
sample = {}
sample = get_audio_features(
sample, audio_data, max_audio_len,
data_truncating='rand_trunc',
data_filling='repeatpad',
audio_cfg=audio_cfg
)
waveform = sample['waveform']
patch_audio = waveform
return patch_audio.unsqueeze(0)
def construct_audio_sample(audio_path):
patch_audio = process_audio(audio_path, sample_rate=48000, max_audio_len=480000, audio_cfg=AUDIO_CFG)
patch_image = torch.zeros((3, cfg.task.patch_image_size, cfg.task.patch_image_size))
patch_type = torch.tensor([2])
patch_mask = torch.tensor([True])
src_text = encode_text(" what does the image describe?", append_bos=True, append_eos=True).unsqueeze(0)
src_length = torch.LongTensor([s.ne(pad_idx).long().sum() for s in src_text])
sample = {
"id":np.array(['42']),
"net_input": {
"src_tokens": src_text,
"src_lengths": src_length,
"patch_images": patch_image,
"patch_audios": patch_audio,
"patch_masks": patch_mask,
"patch_types": patch_type,
}
}
return sample
#####
def get_symbols_to_strip_from_output(generator):
if hasattr(generator, "symbols_to_strip_from_output"):
return generator.symbols_to_strip_from_output
else:
return {generator.bos, generator.eos}
def decode_fn(x, tgt_dict, bpe, generator, tokenizer=None):
x = tgt_dict.string(x.int().cpu(), extra_symbols_to_ignore=get_symbols_to_strip_from_output(generator))
token_result = []
bin_result = []
img_result = []
for token in x.strip().split():
if token.startswith('<bin_'):
bin_result.append(token)
elif token.startswith('<code_'):
img_result.append(token)
else:
if bpe is not None:
token = bpe.decode('{}'.format(token))
if tokenizer is not None:
token = tokenizer.decode(token)
if token.startswith(' ') or len(token_result) == 0:
token_result.append(token.strip())
else:
token_result[-1] += token
return ' '.join(token_result), ' '.join(bin_result), ' '.join(img_result)
def bin2coord(bins, w_resize_ratio, h_resize_ratio, cfg):
bin_list = [int(bin[5:-1]) for bin in bins.strip().split()]
coord_list = []
coord_list += [bin_list[0] / (cfg.task.num_bins - 1) * cfg.task.max_image_size / w_resize_ratio]
coord_list += [bin_list[1] / (cfg.task.num_bins - 1) * cfg.task.max_image_size / h_resize_ratio]
coord_list += [bin_list[2] / (cfg.task.num_bins - 1) * cfg.task.max_image_size / w_resize_ratio]
coord_list += [bin_list[3] / (cfg.task.num_bins - 1) * cfg.task.max_image_size / h_resize_ratio]
return coord_list
def encode_text(text, length=None, append_bos=False, append_eos=False):
line = [
general_task.bpe.encode(' {}'.format(word.strip()))
if not word.startswith('<code_') and not word.startswith('<bin_') else word
for word in text.strip().split()
]
line = ' '.join(line)
s = general_task.tgt_dict.encode_line(
line=line,
add_if_not_exist=False,
append_eos=False
).long()
if length is not None:
s = s[:length]
if append_bos:
s = torch.cat([bos_item, s])
if append_eos:
s = torch.cat([s, eos_item])
return s
# image
def construct_sample(image: Image, instruction: str, transform):
patch_image = transform(image).unsqueeze(0)
patch_mask = torch.tensor([True])
instruction = encode_text(' {}'.format(instruction.lower().strip()), append_bos=True, append_eos=True).unsqueeze(0)
instruction_length = torch.LongTensor([s.ne(pad_idx).long().sum() for s in instruction])
sample = {
"id": np.array(['42']),
"net_input": {
"src_tokens": instruction,
"src_lengths": instruction_length,
"patch_images": patch_image,
"patch_masks": patch_mask,
}
}
return sample
# Function to turn FP32 to FP16
def apply_half(t):
if t.dtype is torch.float32:
return t.to(dtype=torch.half)
return t
def inference(image, task_type, instruction):
if task_type == 'Image Captioning':
task = caption_task
models = caption_models
generator = caption_generator
instruction = 'what does the image describe?'
transform = caption_transform
cfg = caption_cfg
elif task_type == 'Video Captioning':
task = video_caption_task
models = video_caption_models
generator = video_caption_generator
instruction = 'what does the video describe?'
cfg = video_caption_cfg
elif task_type == 'Audio Captioning':
task = audio_caption_task
models = audio_caption_models
generator = audio_caption_generator
instruction = 'what does the audio describe?'
cfg = audio_caption_cfg
elif task_type == 'Visual Question Answering':
task = vqa_task
models = vqa_models
generator = vqa_generator
transform = vqa_transform
cfg = vqa_cfg
elif task_type == 'Visual Grounding':
task = refcoco_task
models = refcoco_models
generator = refcoco_generator
instruction = 'which region does the text " {} " describe?'.format(instruction)
transform = refcoco_transform
cfg = refcoco_cfg
elif task_type == 'General':
task = general_task
models = general_models
generator = general_generator
transform = general_transform
cfg = general_cfg
elif task_type == 'General Video':
task = video_general_task
models = video_general_models
generator = video_general_generator
transform = general_transform
cfg = video_general_cfg
else:
raise NotImplementedError
# Construct input sample & preprocess for GPU if cuda available
if "Video" in task_type:
sample = construct_video_sample(video)
elif "Audio" in task_type:
sample = construct_audio_sample(audio)
else:
sample = construct_sample(image, instruction, transform)
sample = utils.move_to_cuda(sample) if use_cuda else sample
sample = utils.apply_to_sample(apply_half, sample) if use_fp16 else sample
# Generate result
with torch.no_grad():
hypos = task.inference_step(generator, models, sample)
tokens, bins, imgs = decode_fn(hypos[0][0]["tokens"], task.tgt_dict, task.bpe, generator)
if bins.strip() != '':
w, h = image.size
w_resize_ratio = task.cfg.patch_image_size / w
h_resize_ratio = task.cfg.patch_image_size / h
img = np.asarray(image)
coord_list = bin2coord(bins, w_resize_ratio, h_resize_ratio, cfg)
cv2.rectangle(
img,
(int(coord_list[0]), int(coord_list[1])),
(int(coord_list[2]), int(coord_list[3])),
(0, 255, 0),
3
)
return img, None
else:
return None, tokens
inputs = [gr.inputs.Image(type='pil'), gr.Audio(source="upload", type="filepath"), gr.Video(source="upload", type="filepath"), gr.inputs.Radio(choices=['Image Captioning', 'Video Captioning', 'Audio Captioning', "Visual Question Answering", "Visual Grounding", "General", "General Video"], type="value", default="Image Captioning", label="Task"), gr.inputs.Textbox(lines=1, label="Instruction")]
outputs = [gr.outputs.Image(type='pil'), 'text']
examples = [
# ['examples/caption/soccer.jpg', 'Image Captioning', None],
# ['examples/sheep.jpg', 'Visual Question Answering', 'where are the cats?'],
# ['examples/one_piece.jpeg', 'Visual Grounding', 'a man in a straw hat and a red dress'],
['examples/caption/skateboard.jpg', 'General', 'which region does the text " a grey car " describe?'],
# ['examples/caption/baseball.jpg', 'General', 'what color is the left car?']
]
title = "UnIVAL"
description = "Gradio Demo for UnIVAL: "
article = "<p style='text-align: center'><a href='http://arxiv.org/abs/2202.03052' target='_blank'>Paper</a> | <a href='https://github.com/OFA-Sys/OFA' target='_blank'>Github Repo</a></p>"
io = gr.Interface(fn=inference, inputs=inputs, outputs=outputs,
title=title, description=description, article=article, examples=examples, cache_examples=False)
io.launch() |