|
# Fine-tuning BART on CNN-Dailymail summarization task |
|
|
|
### 1) Download the CNN and Daily Mail data and preprocess it into data files with non-tokenized cased samples. |
|
|
|
Follow the instructions [here](https://github.com/abisee/cnn-dailymail) to download the original CNN and Daily Mail datasets. To preprocess the data, refer to the pointers in [this issue](https://github.com/pytorch/fairseq/issues/1391) or check out the code [here](https://github.com/artmatsak/cnn-dailymail). |
|
|
|
Follow the instructions [here](https://github.com/EdinburghNLP/XSum) to download the original Extreme Summarization datasets, or check out the code [here](https://github.com/EdinburghNLP/XSum/tree/master/XSum-Dataset), Please keep the raw dataset and make sure no tokenization nor BPE on the dataset. |
|
|
|
### 2) BPE preprocess: |
|
|
|
```bash |
|
wget -N 'https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/encoder.json' |
|
wget -N 'https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/vocab.bpe' |
|
wget -N 'https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/dict.txt' |
|
|
|
TASK=cnn_dm |
|
for SPLIT in train val |
|
do |
|
for LANG in source target |
|
do |
|
python -m examples.roberta.multiprocessing_bpe_encoder \ |
|
--encoder-json encoder.json \ |
|
--vocab-bpe vocab.bpe \ |
|
--inputs "$TASK/$SPLIT.$LANG" \ |
|
--outputs "$TASK/$SPLIT.bpe.$LANG" \ |
|
--workers 60 \ |
|
--keep-empty; |
|
done |
|
done |
|
``` |
|
|
|
### 3) Binarize dataset: |
|
```bash |
|
fairseq-preprocess \ |
|
--source-lang "source" \ |
|
--target-lang "target" \ |
|
--trainpref "${TASK}/train.bpe" \ |
|
--validpref "${TASK}/val.bpe" \ |
|
--destdir "${TASK}-bin/" \ |
|
--workers 60 \ |
|
--srcdict dict.txt \ |
|
--tgtdict dict.txt; |
|
``` |
|
|
|
### 4) Fine-tuning on CNN-DM summarization task: |
|
Example fine-tuning CNN-DM |
|
```bash |
|
TOTAL_NUM_UPDATES=20000 |
|
WARMUP_UPDATES=500 |
|
LR=3e-05 |
|
MAX_TOKENS=2048 |
|
UPDATE_FREQ=4 |
|
BART_PATH=/path/to/bart/model.pt |
|
|
|
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 fairseq-train cnn_dm-bin \ |
|
--restore-file $BART_PATH \ |
|
--max-tokens $MAX_TOKENS \ |
|
--task translation \ |
|
--source-lang source --target-lang target \ |
|
--truncate-source \ |
|
--layernorm-embedding \ |
|
--share-all-embeddings \ |
|
--share-decoder-input-output-embed \ |
|
--reset-optimizer --reset-dataloader --reset-meters \ |
|
--required-batch-size-multiple 1 \ |
|
--arch bart_large \ |
|
--criterion label_smoothed_cross_entropy \ |
|
--label-smoothing 0.1 \ |
|
--dropout 0.1 --attention-dropout 0.1 \ |
|
--weight-decay 0.01 --optimizer adam --adam-betas "(0.9, 0.999)" --adam-eps 1e-08 \ |
|
--clip-norm 0.1 \ |
|
--lr-scheduler polynomial_decay --lr $LR --total-num-update $TOTAL_NUM_UPDATES --warmup-updates $WARMUP_UPDATES \ |
|
--fp16 --update-freq $UPDATE_FREQ \ |
|
--skip-invalid-size-inputs-valid-test \ |
|
--find-unused-parameters; |
|
``` |
|
Above is expected to run on `1` node with `8 32gb-V100`. |
|
Expected training time is about `5 hours`. Training time can be reduced with distributed training on `4` nodes and `--update-freq 1`. |
|
|
|
Use TOTAL_NUM_UPDATES=15000 UPDATE_FREQ=2 for Xsum task |
|
|
|
### Inference for CNN-DM test data using above trained checkpoint. |
|
After training the model as mentioned in previous step, you can perform inference with checkpoints in `checkpoints/` directory using `eval_cnn.py`, for example |
|
|
|
```bash |
|
cp data-bin/cnn_dm/dict.source.txt checkpoints/ |
|
python examples/bart/summarize.py \ |
|
--model-dir checkpoints \ |
|
--model-file checkpoint_best.pt \ |
|
--src cnn_dm/test.source \ |
|
--out cnn_dm/test.hypo |
|
``` |
|
For XSUM, which uses beam=6, lenpen=1.0, max_len_b=60, min_len=10: |
|
```bash |
|
cp data-bin/cnn_dm/dict.source.txt checkpoints/ |
|
python examples/bart/summarize.py \ |
|
--model-dir checkpoints \ |
|
--model-file checkpoint_best.pt \ |
|
--src cnn_dm/test.source \ |
|
--out cnn_dm/test.hypo \ |
|
--xsum-kwargs |
|
``` |
|
|