Language Modeling with Gated Convolutional Networks (Dauphin et al., 2017)
Example usage
First download and preprocess the data following the main language modeling README.
Then to train a convolutional LM using the fconv_lm_dauphin_wikitext103
architecture:
fairseq-train --task language_modeling \
data-bin/wikitext-103 \
--save-dir checkpoints/fconv_wikitext-103 \
--arch fconv_lm_dauphin_wikitext103 \
--adaptive-softmax-cutoff 10000,20000,200000 \
--dropout 0.2 \
--criterion adaptive_loss \
--optimizer nag --clip-norm 0.1 --weight-decay 5e-06 \
--lr 1.0 --lr-scheduler reduce_lr_on_plateau --lr-shrink 0.5 \
--max-tokens 1024 --tokens-per-sample 1024 \
--ddp-backend legacy_ddp \
--max-epoch 35
And evaluate with:
fairseq-eval-lm data-bin/wikitext-103 --path checkpoints/fconv_wiki103/checkpoint_best.pt
Citation
@inproceedings{dauphin2017language,
title={Language Modeling with Gated Convolutional Networks},
author={Dauphin, Yann N and Fan, Angela and Auli, Michael and Grangier, David},
booktitle={Proceedings of the 34th International Conference on Machine Learning-Volume 70},
pages={933--941},
year={2017},
organization={JMLR}
}