|
# Unsupervised Quality Estimation for Neural Machine Translation (Fomicheva et al., 2020) |
|
|
|
This page includes instructions for reproducing results from the paper [Unsupervised Quality Estimation for Neural |
|
Machine Translation (Fomicheva et al., 2020)](https://arxiv.org/abs/2005.10608) |
|
|
|
## Requirements: |
|
|
|
* mosesdecoder: https://github.com/moses-smt/mosesdecoder |
|
* subword-nmt: https://github.com/rsennrich/subword-nmt |
|
* flores: https://github.com/facebookresearch/flores |
|
|
|
## Download Models and Test Data |
|
|
|
Download translation models and test data from [MLQE dataset repository](https://github.com/facebookresearch/mlqe). |
|
|
|
## Set up: |
|
|
|
Given a testset consisting of source sentences and reference translations: |
|
|
|
* `SRC_LANG`: source language |
|
* `TGT_LANG`: target language |
|
* `INPUT`: input prefix, such that the file `$INPUT.$SRC_LANG` contains source sentences and `$INPUT.$TGT_LANG` |
|
contains the reference sentences |
|
* `OUTPUT_DIR`: output path to store results |
|
* `MOSES_DECODER`: path to mosesdecoder installation |
|
* `BPE_ROOT`: path to subword-nmt installation |
|
* `BPE`: path to BPE model |
|
* `MODEL_DIR`: directory containing the NMT model `.pt` file as well as the source and target vocabularies. |
|
* `TMP`: directory for intermediate temporary files |
|
* `GPU`: if translating with GPU, id of the GPU to use for inference |
|
* `DROPOUT_N`: number of stochastic forward passes |
|
|
|
`$DROPOUT_N` is set to 30 in the experiments reported in the paper. However, we observed that increasing it beyond 10 |
|
does not bring substantial improvements. |
|
|
|
## Translate the data using standard decoding |
|
|
|
Preprocess the input data: |
|
``` |
|
for LANG in $SRC_LANG $TGT_LANG; do |
|
perl $MOSES_DECODER/scripts/tokenizer/tokenizer.perl -threads 80 -a -l $LANG < $INPUT.$LANG > $TMP/preprocessed.tok.$LANG |
|
python $BPE_ROOT/apply_bpe.py -c ${BPE} < $TMP/preprocessed.tok.$LANG > $TMP/preprocessed.tok.bpe.$LANG |
|
done |
|
``` |
|
|
|
Binarize the data for faster translation: |
|
|
|
``` |
|
fairseq-preprocess --srcdict $MODEL_DIR/dict.$SRC_LANG.txt --tgtdict $MODEL_DIR/dict.$TGT_LANG.txt |
|
--source-lang ${SRC_LANG} --target-lang ${TGT_LANG} --testpref $TMP/preprocessed.tok.bpe --destdir $TMP/bin --workers 4 |
|
``` |
|
|
|
Translate |
|
|
|
``` |
|
CUDA_VISIBLE_DEVICES=$GPU fairseq-generate $TMP/bin --path ${MODEL_DIR}/${SRC_LANG}-${TGT_LANG}.pt --beam 5 |
|
--source-lang $SRC_LANG --target-lang $TGT_LANG --no-progress-bar --unkpen 5 > $TMP/fairseq.out |
|
grep ^H $TMP/fairseq.out | cut -d- -f2- | sort -n | cut -f3- > $TMP/mt.out |
|
``` |
|
|
|
Post-process |
|
|
|
``` |
|
sed -r 's/(@@ )| (@@ ?$)//g' < $TMP/mt.out | perl $MOSES_DECODER/scripts/tokenizer/detokenizer.perl |
|
-l $TGT_LANG > $OUTPUT_DIR/mt.out |
|
``` |
|
|
|
## Produce uncertainty estimates |
|
|
|
### Scoring |
|
|
|
Make temporary files to store the translations repeated N times. |
|
|
|
``` |
|
python ${SCRIPTS}/scripts/uncertainty/repeat_lines.py -i $TMP/preprocessed.tok.bpe.$SRC_LANG -n $DROPOUT_N |
|
-o $TMP/repeated.$SRC_LANG |
|
python ${SCRIPTS}/scripts/uncertainty/repeat_lines.py -i $TMP/mt.out -n $DROPOUT_N -o $TMP/repeated.$TGT_LANG |
|
|
|
fairseq-preprocess --srcdict ${MODEL_DIR}/dict.${SRC_LANG}.txt $TGT_DIC --source-lang ${SRC_LANG} |
|
--target-lang ${TGT_LANG} --testpref ${TMP}/repeated --destdir ${TMP}/bin-repeated |
|
``` |
|
|
|
Produce model scores for the generated translations using `--retain-dropout` option to apply dropout at inference time: |
|
|
|
``` |
|
CUDA_VISIBLE_DEVICES=${GPU} fairseq-generate ${TMP}/bin-repeated --path ${MODEL_DIR}/${LP}.pt --beam 5 |
|
--source-lang $SRC_LANG --target-lang $TGT_LANG --no-progress-bar --unkpen 5 --score-reference --retain-dropout |
|
--retain-dropout-modules '["TransformerModel","TransformerEncoder","TransformerDecoder","TransformerEncoderLayer"]' |
|
TransformerDecoderLayer --seed 46 > $TMP/dropout.scoring.out |
|
|
|
grep ^H $TMP/dropout.scoring.out | cut -d- -f2- | sort -n | cut -f2 > $TMP/dropout.scores |
|
|
|
``` |
|
|
|
Use `--retain-dropout-modules` to specify the modules. By default, dropout is applied in the same places |
|
as for training. |
|
|
|
Compute the mean of the resulting output distribution: |
|
|
|
``` |
|
python $SCRIPTS/scripts/uncertainty/aggregate_scores.py -i $TMP/dropout.scores -o $OUTPUT_DIR/dropout.scores.mean |
|
-n $DROPOUT_N |
|
``` |
|
|
|
### Generation |
|
|
|
Produce multiple translation hypotheses for the same source using `--retain-dropout` option: |
|
|
|
``` |
|
CUDA_VISIBLE_DEVICES=${GPU} fairseq-generate ${TMP}/bin-repeated --path ${MODEL_DIR}/${LP}.pt |
|
--beam 5 --source-lang $SRC_LANG --target-lang $TGT_LANG --no-progress-bar --retain-dropout |
|
--unkpen 5 --retain-dropout-modules TransformerModel TransformerEncoder TransformerDecoder |
|
TransformerEncoderLayer TransformerDecoderLayer --seed 46 > $TMP/dropout.generation.out |
|
|
|
grep ^H $TMP/dropout.generation.out | cut -d- -f2- | sort -n | cut -f3- > $TMP/dropout.hypotheses_ |
|
|
|
sed -r 's/(@@ )| (@@ ?$)//g' < $TMP/dropout.hypotheses_ | perl $MOSES_DECODER/scripts/tokenizer/detokenizer.perl |
|
-l $TGT_LANG > $TMP/dropout.hypotheses |
|
``` |
|
|
|
Compute similarity between multiple hypotheses corresponding to the same source sentence using Meteor |
|
evaluation metric: |
|
``` |
|
python meteor.py -i $TMP/dropout.hypotheses -m <path_to_meteor_installation> -n $DROPOUT_N -o |
|
$OUTPUT_DIR/dropout.gen.sim.meteor |
|
``` |
|
|