|
|
|
|
|
|
|
|
|
|
|
""" |
|
UnIVAL |
|
""" |
|
from typing import Optional |
|
|
|
import logging |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from fairseq import utils |
|
from fairseq.models import register_model, register_model_architecture |
|
from fairseq.modules.transformer_sentence_encoder import init_bert_params |
|
|
|
from .unify_transformer import TransformerModel |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
@register_model("unival") |
|
class UnIVALModel(TransformerModel): |
|
__jit_unused_properties__ = ["supported_targets"] |
|
|
|
def __init__(self, args, encoder, decoder): |
|
super().__init__(args, encoder, decoder) |
|
|
|
|
|
self.apply(init_bert_params) |
|
|
|
self.classification_heads = nn.ModuleDict() |
|
if hasattr(self.encoder, "dictionary"): |
|
self.eos: int = self.encoder.dictionary.eos() |
|
print('unival') |
|
@staticmethod |
|
def add_args(parser): |
|
super(UnIVALModel, UnIVALModel).add_args(parser) |
|
parser.add_argument( |
|
"--pooler-dropout", |
|
type=float, |
|
metavar="D", |
|
help="dropout probability in the masked_lm pooler layers", |
|
) |
|
parser.add_argument( |
|
"--pooler-classifier", |
|
type=str, |
|
choices=['mlp', 'linear'], |
|
help="type of pooler classifier", |
|
) |
|
parser.add_argument( |
|
"--pooler-activation-fn", |
|
choices=utils.get_available_activation_fns(), |
|
help="activation function to use for pooler layer", |
|
) |
|
parser.add_argument( |
|
"--spectral-norm-classification-head", |
|
action="store_true", |
|
help="Apply spectral normalization on the classification head", |
|
) |
|
|
|
parser.add_argument( |
|
"--strict", |
|
action="store_false", |
|
default=True, |
|
help="if specified allow strict=False when loading model params", |
|
) |
|
|
|
parser.add_argument( |
|
"--adapt_arch_for_init", |
|
action="store_true", |
|
default=True, |
|
help="change UnIVAL arch to be close to init arch", |
|
) |
|
|
|
|
|
@property |
|
def supported_targets(self): |
|
return {"self"} |
|
|
|
def forward( |
|
self, |
|
src_tokens, |
|
src_lengths, |
|
prev_output_tokens, |
|
patch_images: Optional[torch.Tensor] = None, |
|
patch_images_2: Optional[torch.Tensor] = None, |
|
patch_masks: Optional[torch.Tensor] = None, |
|
code_masks: Optional[torch.Tensor] = None, |
|
sample_patch_num: Optional[int] = None, |
|
features_only: bool = False, |
|
classification_head_name: Optional[str] = None, |
|
token_embeddings: Optional[torch.Tensor] = None, |
|
return_all_hiddens: bool = False, |
|
alignment_layer: Optional[int] = None, |
|
alignment_heads: Optional[int] = None, |
|
patch_videos: Optional[torch.Tensor] = None, |
|
patch_types: Optional[torch.Tensor] = None, |
|
patch_audios: Optional[torch.Tensor] = None, |
|
): |
|
if classification_head_name is not None: |
|
features_only = True |
|
|
|
encoder_out = self.encoder( |
|
src_tokens, |
|
src_lengths=src_lengths, |
|
patch_images=patch_images, |
|
patch_masks=patch_masks, |
|
patch_images_2=patch_images_2, |
|
token_embeddings=token_embeddings, |
|
return_all_hiddens=return_all_hiddens, |
|
sample_patch_num=sample_patch_num, |
|
patch_videos=patch_videos, |
|
patch_types=patch_types, |
|
patch_audios=patch_audios, |
|
) |
|
|
|
x, extra = self.decoder( |
|
prev_output_tokens, |
|
code_masks=code_masks, |
|
encoder_out=encoder_out, |
|
features_only=features_only, |
|
alignment_layer=alignment_layer, |
|
alignment_heads=alignment_heads, |
|
src_lengths=src_lengths, |
|
return_all_hiddens=return_all_hiddens, |
|
) |
|
|
|
|
|
pad = self.encoder.padding_idx |
|
if classification_head_name is not None: |
|
prev_lengths = prev_output_tokens.ne(pad).sum(1) |
|
gather_index = prev_lengths[:, None, None].expand(x.size(0), 1, x.size(2)) - 1 |
|
sentence_representation = x.gather(1, gather_index).squeeze() |
|
if self.classification_heads[classification_head_name].use_two_images: |
|
hidden_size = sentence_representation.size(1) |
|
sentence_representation = sentence_representation.view(-1, hidden_size * 2) |
|
for k, head in self.classification_heads.items(): |
|
|
|
if k == classification_head_name: |
|
x = head(sentence_representation) |
|
break |
|
|
|
return x, extra |
|
|
|
def register_embedding_tokens(self, ans2label_dict, src_dict, bpe): |
|
"""Register embedding tokens""" |
|
logger.info("Registering embedding tokens") |
|
self.ans_tensor_list = [] |
|
for i in range(len(ans2label_dict)): |
|
ans = src_dict[-len(ans2label_dict)+i] |
|
ans = ans[5:-1].replace('_', ' ') |
|
ans_tensor = src_dict.encode_line( |
|
line=bpe.encode(' {}'.format(ans.lower())), |
|
add_if_not_exist=False, |
|
append_eos=False |
|
).long() |
|
self.ans_tensor_list.append(ans_tensor) |
|
|
|
def register_classification_head( |
|
self, name, num_classes=None, inner_dim=None, use_two_images=False, **kwargs |
|
): |
|
"""Register a classification head.""" |
|
logger.info("Registering classification head: {0}".format(name)) |
|
if name in self.classification_heads: |
|
prev_num_classes = self.classification_heads[name].out_proj.out_features |
|
prev_inner_dim = self.classification_heads[name].dense.out_features |
|
if num_classes != prev_num_classes or inner_dim != prev_inner_dim: |
|
logger.warning( |
|
're-registering head "{}" with num_classes {} (prev: {}) ' |
|
"and inner_dim {} (prev: {})".format( |
|
name, num_classes, prev_num_classes, inner_dim, prev_inner_dim |
|
) |
|
) |
|
self.classification_heads[name] = UnIVALClassificationHead( |
|
input_dim=self.args.encoder_embed_dim, |
|
inner_dim=inner_dim or self.args.encoder_embed_dim, |
|
num_classes=num_classes, |
|
activation_fn=self.args.pooler_activation_fn, |
|
pooler_dropout=self.args.pooler_dropout, |
|
pooler_classifier=self.args.pooler_classifier, |
|
use_two_images=use_two_images, |
|
do_spectral_norm=getattr( |
|
self.args, "spectral_norm_classification_head", False |
|
), |
|
) |
|
|
|
def upgrade_state_dict_named(self, state_dict, name): |
|
super().upgrade_state_dict_named(state_dict, name) |
|
|
|
prefix = name + "." if name != "" else "" |
|
current_head_names = ( |
|
[] |
|
if not hasattr(self, "classification_heads") |
|
else self.classification_heads.keys() |
|
) |
|
|
|
|
|
keys_to_delete = [] |
|
for k in state_dict.keys(): |
|
if not k.startswith(prefix + "classification_heads."): |
|
continue |
|
|
|
head_name = k[len(prefix + "classification_heads.") :].split(".")[0] |
|
num_classes = state_dict[ |
|
prefix + "classification_heads." + head_name + ".out_proj.weight" |
|
].size(0) |
|
inner_dim = state_dict[ |
|
prefix + "classification_heads." + head_name + ".dense.weight" |
|
].size(0) |
|
|
|
if getattr(self.args, "load_checkpoint_heads", False): |
|
if head_name not in current_head_names: |
|
self.register_classification_head(head_name, num_classes, inner_dim) |
|
else: |
|
if head_name not in current_head_names: |
|
logger.warning( |
|
"deleting classification head ({}) from checkpoint " |
|
"not present in current model: {}".format(head_name, k) |
|
) |
|
keys_to_delete.append(k) |
|
elif ( |
|
num_classes |
|
!= self.classification_heads[head_name].out_proj.out_features |
|
or inner_dim |
|
!= self.classification_heads[head_name].dense.out_features |
|
): |
|
logger.warning( |
|
"deleting classification head ({}) from checkpoint " |
|
"with different dimensions than current model: {}".format( |
|
head_name, k |
|
) |
|
) |
|
keys_to_delete.append(k) |
|
for k in keys_to_delete: |
|
del state_dict[k] |
|
|
|
def truncate_emb(key): |
|
if key in state_dict: |
|
state_dict[key] = state_dict[key][:-1, :] |
|
|
|
|
|
|
|
loaded_dict_size = state_dict["encoder.embed_tokens.weight"].size(0) |
|
if ( |
|
loaded_dict_size == len(self.encoder.dictionary) + 1 |
|
and "<mask>" not in self.encoder.dictionary |
|
): |
|
truncate_emb("encoder.embed_tokens.weight") |
|
truncate_emb("decoder.embed_tokens.weight") |
|
truncate_emb("encoder.output_projection.weight") |
|
truncate_emb("decoder.output_projection.weight") |
|
|
|
if loaded_dict_size < len(self.encoder.dictionary): |
|
num_langids_to_add = len(self.encoder.dictionary) - loaded_dict_size |
|
embed_dim = state_dict["encoder.embed_tokens.weight"].size(1) |
|
|
|
new_lang_embed_to_add = torch.zeros(num_langids_to_add, embed_dim) |
|
if getattr(self, "ans_tensor_list", None): |
|
assert len(new_lang_embed_to_add) == len(self.ans_tensor_list) |
|
for i, ans_tensor in enumerate(self.ans_tensor_list): |
|
ans_embed = F.embedding(ans_tensor, state_dict["encoder.embed_tokens.weight"]) |
|
ans_embed = ans_embed.sum(0) / ans_embed.size(0) |
|
new_lang_embed_to_add[i] = ans_embed |
|
else: |
|
nn.init.normal_(new_lang_embed_to_add, mean=0, std=embed_dim ** -0.5) |
|
new_lang_embed_to_add = new_lang_embed_to_add.to( |
|
dtype=state_dict["encoder.embed_tokens.weight"].dtype, |
|
) |
|
|
|
state_dict["encoder.embed_tokens.weight"] = torch.cat( |
|
[state_dict["encoder.embed_tokens.weight"], new_lang_embed_to_add] |
|
) |
|
state_dict["decoder.embed_tokens.weight"] = torch.cat( |
|
[state_dict["decoder.embed_tokens.weight"], new_lang_embed_to_add] |
|
) |
|
state_dict["decoder.output_projection.weight"] = torch.cat( |
|
[state_dict["decoder.output_projection.weight"], new_lang_embed_to_add] |
|
) |
|
|
|
|
|
|
|
if hasattr(self, "classification_heads"): |
|
cur_state = self.classification_heads.state_dict() |
|
for k, v in cur_state.items(): |
|
if prefix + "classification_heads." + k not in state_dict: |
|
logger.info("Overwriting " + prefix + "classification_heads." + k) |
|
state_dict[prefix + "classification_heads." + k] = v |
|
|
|
|
|
class UnIVALClassificationHead(nn.Module): |
|
"""Head for sentence-level classification tasks.""" |
|
|
|
def __init__( |
|
self, |
|
input_dim, |
|
inner_dim, |
|
num_classes, |
|
activation_fn, |
|
pooler_dropout, |
|
pooler_classifier, |
|
use_two_images=False, |
|
do_spectral_norm=False, |
|
): |
|
super().__init__() |
|
self.pooler_classifier = pooler_classifier |
|
self.use_two_images = use_two_images |
|
input_dim = input_dim * 2 if use_two_images else input_dim |
|
if pooler_classifier == "mlp": |
|
self.dense = nn.Linear(input_dim, inner_dim) |
|
self.activation_fn = utils.get_activation_fn(activation_fn) |
|
self.dropout = nn.Dropout(p=pooler_dropout) |
|
self.out_proj = nn.Linear(inner_dim, num_classes) |
|
elif pooler_classifier == "linear": |
|
self.dropout = nn.Dropout(p=pooler_dropout) |
|
self.out_proj = nn.Linear(input_dim, num_classes) |
|
else: |
|
raise NotImplementedError |
|
|
|
if do_spectral_norm: |
|
self.out_proj = torch.nn.utils.spectral_norm(self.out_proj) |
|
|
|
def forward(self, features, **kwargs): |
|
if self.pooler_classifier == 'mlp': |
|
x = features |
|
x = self.dropout(x) |
|
x = self.dense(x) |
|
x = self.activation_fn(x) |
|
x = self.dropout(x) |
|
x = self.out_proj(x) |
|
elif self.pooler_classifier == 'linear': |
|
x = features |
|
x = self.dropout(x) |
|
x = self.out_proj(x) |
|
else: |
|
raise NotImplementedError |
|
return x |
|
|
|
|
|
@register_model_architecture("unival", "unival_large") |
|
def unival_large_architecture(args): |
|
args.encoder_embed_path = getattr(args, "encoder_embed_path", None) |
|
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 1024) |
|
args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 4 * 1024) |
|
args.encoder_layers = getattr(args, "encoder_layers", 12) |
|
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 16) |
|
args.encoder_normalize_before = getattr(args, "encoder_normalize_before", True) |
|
args.encoder_learned_pos = getattr(args, "encoder_learned_pos", True) |
|
args.decoder_embed_path = getattr(args, "decoder_embed_path", None) |
|
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim) |
|
args.decoder_ffn_embed_dim = getattr( |
|
args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim |
|
) |
|
args.decoder_layers = getattr(args, "decoder_layers", 12) |
|
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16) |
|
args.decoder_normalize_before = getattr(args, "decoder_normalize_before", True) |
|
args.decoder_learned_pos = getattr(args, "decoder_learned_pos", True) |
|
args.attention_dropout = getattr(args, "attention_dropout", 0.0) |
|
args.relu_dropout = getattr(args, "relu_dropout", 0.0) |
|
args.dropout = getattr(args, "dropout", 0.0) |
|
args.max_target_positions = getattr(args, "max_target_positions", 1024) |
|
args.max_source_positions = getattr(args, "max_source_positions", 1024) |
|
args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None) |
|
args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0) |
|
args.share_decoder_input_output_embed = getattr( |
|
args, "share_decoder_input_output_embed", True |
|
) |
|
args.share_all_embeddings = getattr(args, "share_all_embeddings", True) |
|
|
|
args.decoder_output_dim = getattr( |
|
args, "decoder_output_dim", args.decoder_embed_dim |
|
) |
|
args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim) |
|
|
|
args.no_scale_embedding = getattr(args, "no_scale_embedding", True) |
|
args.layernorm_embedding = getattr(args, "layernorm_embedding", True) |
|
|
|
args.activation_fn = getattr(args, "activation_fn", "gelu") |
|
args.pooler_activation_fn = getattr(args, "pooler_activation_fn", "tanh") |
|
args.pooler_dropout = getattr(args, "pooler_dropout", 0.0) |
|
args.pooler_classifier = getattr(args, "pooler_classifier", "mlp") |
|
|
|
args.resnet_drop_path_rate = getattr(args, "resnet_drop_path_rate", 0.0) |
|
args.encoder_drop_path_rate = getattr(args, "encoder_drop_path_rate", 0.0) |
|
args.decoder_drop_path_rate = getattr(args, "decoder_drop_path_rate", 0.0) |
|
|
|
args.resnet_type = getattr(args, "resnet_type", "resnet152") |
|
args.token_bucket_size = getattr(args, "token_bucket_size", 256) |
|
args.image_bucket_size = getattr(args, "image_bucket_size", 42) |
|
|
|
args.freeze_encoder_embedding = getattr(args, "freeze_encoder_embedding", False) |
|
args.freeze_decoder_embedding = getattr(args, "freeze_decoder_embedding", False) |
|
args.add_type_embedding = getattr(args, "add_type_embedding", True) |
|
args.attn_scale_factor = getattr(args, "attn_scale_factor", 2) |
|
|
|
args.code_image_size = getattr(args, "code_image_size", 128) |
|
args.patch_layernorm_embedding = getattr(args, "patch_layernorm_embedding", True) |
|
args.code_layernorm_embedding = getattr(args, "code_layernorm_embedding", True) |
|
args.entangle_position_embedding = getattr(args, "entangle_position_embedding", False) |
|
args.disable_entangle = getattr(args, "disable_entangle", False) |
|
args.sync_bn = getattr(args, "sync_bn", False) |
|
|
|
args.scale_attn = getattr(args, "scale_attn", False) |
|
args.scale_fc = getattr(args, "scale_fc", False) |
|
args.scale_heads = getattr(args, "scale_heads", False) |
|
args.scale_resids = getattr(args, "scale_resids", False) |
|
|
|
args.orig_patch_image_size = getattr(args, "orig_patch_image_size", 256) |
|
|
|
|
|
@register_model_architecture("unival", "unival_base") |
|
def unival_base_architecture(args): |
|
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 768) |
|
args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 4 * 768) |
|
args.encoder_layers = getattr(args, "encoder_layers", 6) |
|
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 12) |
|
args.decoder_layers = getattr(args, "decoder_layers", 6) |
|
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 12) |
|
args.resnet_type = getattr(args, "resnet_type", "resnet101") |
|
unival_large_architecture(args) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|