mshukor
init
3eb682b
raw
history blame
10.3 kB
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import json
import numpy as np
import os
import random
from itertools import chain as chain
import torch
import torch.utils.data
from fvcore.common.file_io import PathManager
import timesformer.utils.logging as logging
from . import utils as utils
from .build import DATASET_REGISTRY
logger = logging.get_logger(__name__)
@DATASET_REGISTRY.register()
class Ssv2(torch.utils.data.Dataset):
"""
Something-Something v2 (SSV2) video loader. Construct the SSV2 video loader,
then sample clips from the videos. For training and validation, a single
clip is randomly sampled from every video with random cropping, scaling, and
flipping. For testing, multiple clips are uniformaly sampled from every
video with uniform cropping. For uniform cropping, we take the left, center,
and right crop if the width is larger than height, or take top, center, and
bottom crop if the height is larger than the width.
"""
def __init__(self, cfg, mode, num_retries=10):
"""
Load Something-Something V2 data (frame paths, labels, etc. ) to a given
Dataset object. The dataset could be downloaded from Something-Something
official website (https://20bn.com/datasets/something-something).
Please see datasets/DATASET.md for more information about the data format.
Args:
cfg (CfgNode): configs.
mode (string): Options includes `train`, `val`, or `test` mode.
For the train and val mode, the data loader will take data
from the train or val set, and sample one clip per video.
For the test mode, the data loader will take data from test set,
and sample multiple clips per video.
num_retries (int): number of retries for reading frames from disk.
"""
# Only support train, val, and test mode.
assert mode in [
"train",
"val",
"test",
], "Split '{}' not supported for Something-Something V2".format(mode)
self.mode = mode
self.cfg = cfg
self._video_meta = {}
self._num_retries = num_retries
# For training or validation mode, one single clip is sampled from every
# video. For testing, NUM_ENSEMBLE_VIEWS clips are sampled from every
# video. For every clip, NUM_SPATIAL_CROPS is cropped spatially from
# the frames.
if self.mode in ["train", "val"]:
self._num_clips = 1
elif self.mode in ["test"]:
self._num_clips = (
cfg.TEST.NUM_ENSEMBLE_VIEWS * cfg.TEST.NUM_SPATIAL_CROPS
)
logger.info("Constructing Something-Something V2 {}...".format(mode))
self._construct_loader()
def _construct_loader(self):
"""
Construct the video loader.
"""
# Loading label names.
with PathManager.open(
os.path.join(
self.cfg.DATA.PATH_TO_DATA_DIR,
"something-something-v2-labels.json",
),
"r",
) as f:
label_dict = json.load(f)
# Loading labels.
label_file = os.path.join(
self.cfg.DATA.PATH_TO_DATA_DIR,
"something-something-v2-{}.json".format(
"train" if self.mode == "train" else "validation"
),
)
with PathManager.open(label_file, "r") as f:
label_json = json.load(f)
self._video_names = []
self._labels = []
for video in label_json:
video_name = video["id"]
template = video["template"]
template = template.replace("[", "")
template = template.replace("]", "")
label = int(label_dict[template])
self._video_names.append(video_name)
self._labels.append(label)
path_to_file = os.path.join(
self.cfg.DATA.PATH_TO_DATA_DIR,
"{}.csv".format("train" if self.mode == "train" else "val"),
)
assert PathManager.exists(path_to_file), "{} dir not found".format(
path_to_file
)
self._path_to_videos, _ = utils.load_image_lists(
path_to_file, self.cfg.DATA.PATH_PREFIX
)
assert len(self._path_to_videos) == len(self._video_names), (
len(self._path_to_videos),
len(self._video_names),
)
# From dict to list.
new_paths, new_labels = [], []
for index in range(len(self._video_names)):
if self._video_names[index] in self._path_to_videos:
new_paths.append(self._path_to_videos[self._video_names[index]])
new_labels.append(self._labels[index])
self._labels = new_labels
self._path_to_videos = new_paths
# Extend self when self._num_clips > 1 (during testing).
self._path_to_videos = list(
chain.from_iterable(
[[x] * self._num_clips for x in self._path_to_videos]
)
)
self._labels = list(
chain.from_iterable([[x] * self._num_clips for x in self._labels])
)
self._spatial_temporal_idx = list(
chain.from_iterable(
[
range(self._num_clips)
for _ in range(len(self._path_to_videos))
]
)
)
logger.info(
"Something-Something V2 dataloader constructed "
" (size: {}) from {}".format(
len(self._path_to_videos), path_to_file
)
)
def __getitem__(self, index):
"""
Given the video index, return the list of frames, label, and video
index if the video frames can be fetched.
Args:
index (int): the video index provided by the pytorch sampler.
Returns:
frames (tensor): the frames of sampled from the video. The dimension
is `channel` x `num frames` x `height` x `width`.
label (int): the label of the current video.
index (int): the index of the video.
"""
short_cycle_idx = None
# When short cycle is used, input index is a tupple.
if isinstance(index, tuple):
index, short_cycle_idx = index
if self.mode in ["train", "val"]: #or self.cfg.MODEL.ARCH in ['resformer', 'vit']:
# -1 indicates random sampling.
spatial_sample_index = -1
min_scale = self.cfg.DATA.TRAIN_JITTER_SCALES[0]
max_scale = self.cfg.DATA.TRAIN_JITTER_SCALES[1]
crop_size = self.cfg.DATA.TRAIN_CROP_SIZE
if short_cycle_idx in [0, 1]:
crop_size = int(
round(
self.cfg.MULTIGRID.SHORT_CYCLE_FACTORS[short_cycle_idx]
* self.cfg.MULTIGRID.DEFAULT_S
)
)
if self.cfg.MULTIGRID.DEFAULT_S > 0:
# Decreasing the scale is equivalent to using a larger "span"
# in a sampling grid.
min_scale = int(
round(
float(min_scale)
* crop_size
/ self.cfg.MULTIGRID.DEFAULT_S
)
)
elif self.mode in ["test"]:
# spatial_sample_index is in [0, 1, 2]. Corresponding to left,
# center, or right if width is larger than height, and top, middle,
# or bottom if height is larger than width.
spatial_sample_index = (
self._spatial_temporal_idx[index]
% self.cfg.TEST.NUM_SPATIAL_CROPS
)
if self.cfg.TEST.NUM_SPATIAL_CROPS == 1:
spatial_sample_index = 1
min_scale, max_scale, crop_size = [self.cfg.DATA.TEST_CROP_SIZE] * 3
# The testing is deterministic and no jitter should be performed.
# min_scale, max_scale, and crop_size are expect to be the same.
assert len({min_scale, max_scale, crop_size}) == 1
else:
raise NotImplementedError(
"Does not support {} mode".format(self.mode)
)
label = self._labels[index]
num_frames = self.cfg.DATA.NUM_FRAMES
video_length = len(self._path_to_videos[index])
seg_size = float(video_length - 1) / num_frames
seq = []
for i in range(num_frames):
start = int(np.round(seg_size * i))
end = int(np.round(seg_size * (i + 1)))
if self.mode == "train":
seq.append(random.randint(start, end))
else:
seq.append((start + end) // 2)
frames = torch.as_tensor(
utils.retry_load_images(
[self._path_to_videos[index][frame] for frame in seq],
self._num_retries,
)
)
# Perform color normalization.
frames = utils.tensor_normalize(
frames, self.cfg.DATA.MEAN, self.cfg.DATA.STD
)
# T H W C -> C T H W.
frames = frames.permute(3, 0, 1, 2)
frames = utils.spatial_sampling(
frames,
spatial_idx=spatial_sample_index,
min_scale=min_scale,
max_scale=max_scale,
crop_size=crop_size,
random_horizontal_flip=self.cfg.DATA.RANDOM_FLIP,
inverse_uniform_sampling=self.cfg.DATA.INV_UNIFORM_SAMPLE,
)
#if not self.cfg.RESFORMER.ACTIVE:
if not self.cfg.MODEL.ARCH in ['vit']:
frames = utils.pack_pathway_output(self.cfg, frames)
else:
# Perform temporal sampling from the fast pathway.
frames = torch.index_select(
frames,
1,
torch.linspace(
0, frames.shape[1] - 1, self.cfg.DATA.NUM_FRAMES
).long(),
)
return frames, label, index, {}
def __len__(self):
"""
Returns:
(int): the number of videos in the dataset.
"""
return len(self._path_to_videos)