cross_entropy_loss / cross_entropy_loss.py
mtzig's picture
implements model
0229d4e
raw
history blame
2.49 kB
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Cross Entropy Loss Metric"""
import evaluate
import datasets
import torch.nn.functional as F
import torch
# TODO: Add BibTeX citation
_CITATION = """
"""
# TODO: Add description of the module here
_DESCRIPTION = """\
A simple metric that calculates cross-entropy loss. Created so that I can log losses from different training tasks within a Hugging Face trainer for multi-task training.
"""
# TODO: Add description of the arguments of the module here
_KWARGS_DESCRIPTION = """
prediction_scores: the logits
references: the labels
"""
# TODO: Define external resources urls if needed
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class cross_entropy_loss(evaluate.Metric):
"""TODO: Short description of my evaluation module."""
def _info(self):
# TODO: Specifies the evaluate.EvaluationModuleInfo object
return evaluate.MetricInfo(
# This is the description that will appear on the modules page.
module_type="metric",
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
# This defines the format of each prediction and reference
features=datasets.Features(
{
"prediction_scores": datasets.Sequence(datasets.Value("float")),
"references": datasets.Value("int32")
}
)
)
def _compute(self, prediction_scores, references):
"""Returns the scores"""
loss = F.cross_entropy(input=torch.from_numpy(prediction_scores).flatten(start_dim=0, end_dim=1),
target=torch.from_numpy(references).flatten(),
ignore_index=-100).item()
return {
"cross_entropy_loss": loss
}