|
import os |
|
import gradio as gr |
|
from huggingface_hub import InferenceClient |
|
from transformers import pipeline |
|
|
|
|
|
llama_client = InferenceClient(provider="sambanova", api_key=os.environ["HF_TOKEN"]) |
|
minimax_client = InferenceClient(provider="novita", api_key=os.environ["HF_TOKEN"]) |
|
mistral_client = InferenceClient(provider="together", api_key=os.environ["HF_TOKEN"]) |
|
|
|
|
|
chart_pipe = pipeline("text2text-generation", model="yuan-tian/chartgpt-llama3") |
|
|
|
|
|
def chat_with_model(model_choice, prompt, image_url): |
|
if not prompt: |
|
return "Please enter a text prompt." |
|
|
|
try: |
|
if model_choice == "LLaMA 4 (SambaNova)": |
|
content = [{"type": "text", "text": prompt}] |
|
if image_url: |
|
content.append({"type": "image_url", "image_url": {"url": image_url}}) |
|
messages = [{"role": "user", "content": content}] |
|
completion = llama_client.chat.completions.create( |
|
model="meta-llama/Llama-4-Maverick-17B-128E-Instruct", |
|
messages=messages |
|
) |
|
return completion.choices[0].message.content |
|
|
|
elif model_choice == "MiniMax M1 (Novita)": |
|
messages = [{"role": "user", "content": prompt}] |
|
completion = minimax_client.chat.completions.create( |
|
model="MiniMaxAI/MiniMax-M1-80k", |
|
messages=messages |
|
) |
|
return completion.choices[0].message.content |
|
|
|
elif model_choice == "Mistral Mixtral-8x7B (Together)": |
|
messages = [{"role": "user", "content": prompt}] |
|
completion = mistral_client.chat.completions.create( |
|
model="mistralai/Mixtral-8x7B-Instruct-v0.1", |
|
messages=messages |
|
) |
|
return completion.choices[0].message.content |
|
|
|
else: |
|
return "Unsupported model selected." |
|
except Exception as e: |
|
return f"Error: {e}" |
|
|
|
|
|
def generate_chart_code(prompt): |
|
try: |
|
response = chart_pipe(prompt, max_new_tokens=512)[0]["generated_text"] |
|
return response |
|
except Exception as e: |
|
return f"ChartGPT error: {e}" |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("## π₯ Multi-Tool AI Space: Chat + Chart Generator") |
|
|
|
with gr.Tabs(): |
|
with gr.Tab("π¬ Multimodel Chat"): |
|
model_dropdown = gr.Dropdown( |
|
choices=[ |
|
"LLaMA 4 (SambaNova)", |
|
"MiniMax M1 (Novita)", |
|
"Mistral Mixtral-8x7B (Together)" |
|
], |
|
value="LLaMA 4 (SambaNova)", |
|
label="Select Model" |
|
) |
|
prompt_input = gr.Textbox(label="Text Prompt", placeholder="Ask something...", lines=2) |
|
image_url_input = gr.Textbox(label="Optional Image URL (for LLaMA only)", placeholder="https://example.com/image.jpg") |
|
submit_btn = gr.Button("Generate Response") |
|
output_box = gr.Textbox(label="Response", lines=8) |
|
submit_btn.click(chat_with_model, [model_dropdown, prompt_input, image_url_input], output_box) |
|
|
|
with gr.Tab("π Chart Generator (ChartGPT)"): |
|
chart_prompt = gr.Textbox(label="Enter data analysis prompt", placeholder="Generate a bar chart comparing 2023 sales in North America and Europe", lines=3) |
|
chart_btn = gr.Button("Generate Chart Code") |
|
chart_output = gr.Textbox(label="ChartGPT Code Output", lines=16) |
|
chart_btn.click(generate_chart_code, chart_prompt, chart_output) |
|
|
|
demo.launch() |
|
|