Spaces:
Runtime error
Runtime error
from typing import Optional, Tuple, Union | |
from pathlib import Path | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from itertools import chain | |
from .unet_blocks import UNetMidBlock2D, get_down_block, get_up_block | |
from .taming_discriminator import NLayerDiscriminator | |
from medical_diffusion.models import BasicModel | |
from torchvision.utils import save_image | |
from torch.distributions.normal import Normal | |
from torch.distributions import kl_divergence | |
class Encoder(nn.Module): | |
def __init__( | |
self, | |
in_channels=3, | |
out_channels=3, | |
down_block_types=("DownEncoderBlock2D",), | |
block_out_channels=(64), | |
layers_per_block=2, | |
norm_num_groups=32, | |
act_fn="silu", | |
double_z=True, | |
): | |
super().__init__() | |
self.layers_per_block = layers_per_block | |
self.conv_in = torch.nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, stride=1, padding=1) | |
self.mid_block = None | |
self.down_blocks = nn.ModuleList([]) | |
# down | |
output_channel = block_out_channels[0] | |
for i, down_block_type in enumerate(down_block_types): | |
input_channel = output_channel | |
output_channel = block_out_channels[i+1] | |
is_final_block = False #i == len(block_out_channels) - 1 | |
down_block = get_down_block( | |
down_block_type, | |
num_layers=self.layers_per_block, | |
in_channels=input_channel, | |
out_channels=output_channel, | |
add_downsample=not is_final_block, | |
resnet_eps=1e-6, | |
downsample_padding=0, | |
resnet_act_fn=act_fn, | |
resnet_groups=norm_num_groups, | |
attn_num_head_channels=None, | |
temb_channels=None, | |
) | |
self.down_blocks.append(down_block) | |
# mid | |
self.mid_block = UNetMidBlock2D( | |
in_channels=block_out_channels[-1], | |
resnet_eps=1e-6, | |
resnet_act_fn=act_fn, | |
output_scale_factor=1, | |
resnet_time_scale_shift="default", | |
attn_num_head_channels=None, | |
resnet_groups=norm_num_groups, | |
temb_channels=None, | |
) | |
# out | |
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6) | |
self.conv_act = nn.SiLU() | |
conv_out_channels = 2 * out_channels if double_z else out_channels | |
self.conv_out = nn.Conv2d(block_out_channels[-1], conv_out_channels, 3, padding=1) | |
def forward(self, x): | |
sample = x | |
sample = self.conv_in(sample) | |
# down | |
for down_block in self.down_blocks: | |
sample = down_block(sample) | |
# middle | |
sample = self.mid_block(sample) | |
# post-process | |
sample = self.conv_norm_out(sample) | |
sample = self.conv_act(sample) | |
sample = self.conv_out(sample) | |
return sample | |
class Decoder(nn.Module): | |
def __init__( | |
self, | |
in_channels=3, | |
out_channels=3, | |
up_block_types=("UpDecoderBlock2D",), | |
block_out_channels=(64,), | |
layers_per_block=2, | |
norm_num_groups=32, | |
act_fn="silu", | |
): | |
super().__init__() | |
self.layers_per_block = layers_per_block | |
self.conv_in = nn.Conv2d(in_channels, block_out_channels[-1], kernel_size=3, stride=1, padding=1) | |
self.mid_block = None | |
self.up_blocks = nn.ModuleList([]) | |
# mid | |
self.mid_block = UNetMidBlock2D( | |
in_channels=block_out_channels[-1], | |
resnet_eps=1e-6, | |
resnet_act_fn=act_fn, | |
output_scale_factor=1, | |
resnet_time_scale_shift="default", | |
attn_num_head_channels=None, | |
resnet_groups=norm_num_groups, | |
temb_channels=None, | |
) | |
# up | |
reversed_block_out_channels = list(reversed(block_out_channels)) | |
output_channel = reversed_block_out_channels[0] | |
for i, up_block_type in enumerate(up_block_types): | |
prev_output_channel = output_channel | |
output_channel = reversed_block_out_channels[i+1] | |
is_final_block = False # i == len(block_out_channels) - 1 | |
up_block = get_up_block( | |
up_block_type, | |
num_layers=self.layers_per_block + 1, | |
in_channels=prev_output_channel, | |
out_channels=output_channel, | |
prev_output_channel=None, | |
add_upsample=not is_final_block, | |
resnet_eps=1e-6, | |
resnet_act_fn=act_fn, | |
resnet_groups=norm_num_groups, | |
attn_num_head_channels=None, | |
temb_channels=None, | |
) | |
self.up_blocks.append(up_block) | |
prev_output_channel = output_channel | |
# out | |
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6) | |
self.conv_act = nn.SiLU() | |
self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1) | |
def forward(self, z): | |
sample = z | |
sample = self.conv_in(sample) | |
# middle | |
sample = self.mid_block(sample) | |
# up | |
for up_block in self.up_blocks: | |
sample = up_block(sample) | |
# post-process | |
sample = self.conv_norm_out(sample) | |
sample = self.conv_act(sample) | |
sample = self.conv_out(sample) | |
return sample | |
class VectorQuantizer(nn.Module): | |
""" | |
Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly avoids costly matrix | |
multiplications and allows for post-hoc remapping of indices. | |
""" | |
# NOTE: due to a bug the beta term was applied to the wrong term. for | |
# backwards compatibility we use the buggy version by default, but you can | |
# specify legacy=False to fix it. | |
def __init__(self, n_e, e_dim, beta, remap=None, unknown_index="random", sane_index_shape=False, legacy=False): | |
super().__init__() | |
self.n_e = n_e | |
self.e_dim = e_dim | |
self.beta = beta | |
self.legacy = legacy | |
self.embedding = nn.Embedding(self.n_e, self.e_dim) | |
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e) | |
self.remap = remap | |
if self.remap is not None: | |
self.register_buffer("used", torch.tensor(np.load(self.remap))) | |
self.re_embed = self.used.shape[0] | |
self.unknown_index = unknown_index # "random" or "extra" or integer | |
if self.unknown_index == "extra": | |
self.unknown_index = self.re_embed | |
self.re_embed = self.re_embed + 1 | |
print( | |
f"Remapping {self.n_e} indices to {self.re_embed} indices. " | |
f"Using {self.unknown_index} for unknown indices." | |
) | |
else: | |
self.re_embed = n_e | |
self.sane_index_shape = sane_index_shape | |
def remap_to_used(self, inds): | |
ishape = inds.shape | |
assert len(ishape) > 1 | |
inds = inds.reshape(ishape[0], -1) | |
used = self.used.to(inds) | |
match = (inds[:, :, None] == used[None, None, ...]).long() | |
new = match.argmax(-1) | |
unknown = match.sum(2) < 1 | |
if self.unknown_index == "random": | |
new[unknown] = torch.randint(0, self.re_embed, size=new[unknown].shape).to(device=new.device) | |
else: | |
new[unknown] = self.unknown_index | |
return new.reshape(ishape) | |
def unmap_to_all(self, inds): | |
ishape = inds.shape | |
assert len(ishape) > 1 | |
inds = inds.reshape(ishape[0], -1) | |
used = self.used.to(inds) | |
if self.re_embed > self.used.shape[0]: # extra token | |
inds[inds >= self.used.shape[0]] = 0 # simply set to zero | |
back = torch.gather(used[None, :][inds.shape[0] * [0], :], 1, inds) | |
return back.reshape(ishape) | |
def forward(self, z): | |
# reshape z -> (batch, height, width, channel) and flatten | |
z = z.permute(0, 2, 3, 1).contiguous() | |
z_flattened = z.view(-1, self.e_dim) | |
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z | |
d = ( | |
torch.sum(z_flattened**2, dim=1, keepdim=True) | |
+ torch.sum(self.embedding.weight**2, dim=1) | |
- 2 * torch.einsum("bd,dn->bn", z_flattened, self.embedding.weight.t()) | |
) | |
min_encoding_indices = torch.argmin(d, dim=1) | |
z_q = self.embedding(min_encoding_indices).view(z.shape) | |
perplexity = None | |
min_encodings = None | |
# compute loss for embedding | |
if not self.legacy: | |
loss = self.beta * torch.mean((z_q.detach() - z) ** 2) + torch.mean((z_q - z.detach()) ** 2) | |
else: | |
loss = torch.mean((z_q.detach() - z) ** 2) + self.beta * torch.mean((z_q - z.detach()) ** 2) | |
# preserve gradients | |
z_q = z + (z_q - z).detach() | |
# reshape back to match original input shape | |
z_q = z_q.permute(0, 3, 1, 2).contiguous() | |
if self.remap is not None: | |
min_encoding_indices = min_encoding_indices.reshape(z.shape[0], -1) # add batch axis | |
min_encoding_indices = self.remap_to_used(min_encoding_indices) | |
min_encoding_indices = min_encoding_indices.reshape(-1, 1) # flatten | |
if self.sane_index_shape: | |
min_encoding_indices = min_encoding_indices.reshape(z_q.shape[0], z_q.shape[2], z_q.shape[3]) | |
return z_q, loss, (perplexity, min_encodings, min_encoding_indices) | |
def get_codebook_entry(self, indices, shape): | |
# shape specifying (batch, height, width, channel) | |
if self.remap is not None: | |
indices = indices.reshape(shape[0], -1) # add batch axis | |
indices = self.unmap_to_all(indices) | |
indices = indices.reshape(-1) # flatten again | |
# get quantized latent vectors | |
z_q = self.embedding(indices) | |
if shape is not None: | |
z_q = z_q.view(shape) | |
# reshape back to match original input shape | |
z_q = z_q.permute(0, 3, 1, 2).contiguous() | |
return z_q | |
class DiagonalGaussianDistribution(object): | |
def __init__(self, parameters, deterministic=False): | |
self.batch_size = parameters.shape[0] | |
self.parameters = parameters | |
self.mean, self.logvar = torch.chunk(parameters, 2, dim=1) | |
# self.logvar = torch.clamp(self.logvar, -30.0, 20.0) | |
self.deterministic = deterministic | |
self.std = torch.exp(0.5 * self.logvar) | |
self.var = torch.exp(self.logvar) | |
if self.deterministic: | |
self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device) | |
def sample(self, generator: Optional[torch.Generator] = None) -> torch.FloatTensor: | |
device = self.parameters.device | |
sample_device = "cpu" if device.type == "mps" else device | |
sample = torch.randn(self.mean.shape, generator=generator, device=sample_device).to(device) | |
x = self.mean + self.std * sample | |
return x | |
def kl(self, other=None): | |
if self.deterministic: | |
return torch.Tensor([0.0]) | |
else: | |
if other is None: | |
return 0.5 * torch.sum(torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar)/self.batch_size | |
else: | |
return 0.5 * torch.sum( | |
torch.pow(self.mean - other.mean, 2) / other.var | |
+ self.var / other.var | |
- 1.0 | |
- self.logvar | |
+ other.logvar, | |
)/self.batch_size | |
# q_z_x = Normal(self.mean, self.logvar.mul(.5).exp()) | |
# p_z = Normal(torch.zeros_like(self.mean), torch.ones_like(self.logvar)) | |
# kl_div = kl_divergence(q_z_x, p_z).sum(1).mean() | |
# return kl_div | |
def nll(self, sample, dims=[1, 2, 3]): | |
if self.deterministic: | |
return torch.Tensor([0.0]) | |
logtwopi = np.log(2.0 * np.pi) | |
return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var, dim=dims) | |
def mode(self): | |
return self.mean | |
class VQModel(nn.Module): | |
r"""VQ-VAE model from the paper Neural Discrete Representation Learning by Aaron van den Oord, Oriol Vinyals and Koray | |
Kavukcuoglu. | |
This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library | |
implements for all the model (such as downloading or saving, etc.) | |
Parameters: | |
in_channels (int, *optional*, defaults to 3): Number of channels in the input image. | |
out_channels (int, *optional*, defaults to 3): Number of channels in the output. | |
down_block_types (`Tuple[str]`, *optional*, defaults to : | |
obj:`("DownEncoderBlock2D",)`): Tuple of downsample block types. | |
up_block_types (`Tuple[str]`, *optional*, defaults to : | |
obj:`("UpDecoderBlock2D",)`): Tuple of upsample block types. | |
block_out_channels (`Tuple[int]`, *optional*, defaults to : | |
obj:`(64,)`): Tuple of block output channels. | |
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use. | |
latent_channels (`int`, *optional*, defaults to `3`): Number of channels in the latent space. | |
sample_size (`int`, *optional*, defaults to `32`): TODO | |
num_vq_embeddings (`int`, *optional*, defaults to `256`): Number of codebook vectors in the VQ-VAE. | |
""" | |
def __init__( | |
self, | |
in_channels: int = 3, | |
out_channels: int = 3, | |
down_block_types: Tuple[str] = ("DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"), | |
up_block_types: Tuple[str] = ("UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"), | |
block_out_channels: Tuple[int] = (32, 64, 128, 256), | |
layers_per_block: int = 1, | |
act_fn: str = "silu", | |
latent_channels: int = 3, | |
sample_size: int = 32, | |
num_vq_embeddings: int = 256, | |
norm_num_groups: int = 32, | |
): | |
super().__init__() | |
# pass init params to Encoder | |
self.encoder = Encoder( | |
in_channels=in_channels, | |
out_channels=latent_channels, | |
down_block_types=down_block_types, | |
block_out_channels=block_out_channels, | |
layers_per_block=layers_per_block, | |
act_fn=act_fn, | |
norm_num_groups=norm_num_groups, | |
double_z=False, | |
) | |
self.quant_conv = torch.nn.Conv2d(latent_channels, latent_channels, 1) | |
self.quantize = VectorQuantizer( | |
num_vq_embeddings, latent_channels, beta=0.25, remap=None, sane_index_shape=False | |
) | |
self.post_quant_conv = torch.nn.Conv2d(latent_channels, latent_channels, 1) | |
# pass init params to Decoder | |
self.decoder = Decoder( | |
in_channels=latent_channels, | |
out_channels=out_channels, | |
up_block_types=up_block_types, | |
block_out_channels=block_out_channels, | |
layers_per_block=layers_per_block, | |
act_fn=act_fn, | |
norm_num_groups=norm_num_groups, | |
) | |
# def encode(self, x: torch.FloatTensor): | |
# z = self.encoder(x) | |
# z = self.quant_conv(z) | |
# return z | |
def encode(self, x, return_loss=True, force_quantize= True): | |
z = self.encoder(x) | |
z = self.quant_conv(z) | |
if force_quantize: | |
z_q, emb_loss, _ = self.quantize(z) | |
else: | |
z_q, emb_loss = z, None | |
if return_loss: | |
return z_q, emb_loss | |
else: | |
return z_q | |
def decode(self, z_q) -> torch.FloatTensor: | |
z_q = self.post_quant_conv(z_q) | |
x = self.decoder(z_q) | |
return x | |
# def decode(self, z: torch.FloatTensor, return_loss=True, force_quantize: bool = True) -> torch.FloatTensor: | |
# if force_quantize: | |
# z_q, emb_loss, _ = self.quantize(z) | |
# else: | |
# z_q, emb_loss = z, None | |
# z_q = self.post_quant_conv(z_q) | |
# x = self.decoder(z_q) | |
# if return_loss: | |
# return x, emb_loss | |
# else: | |
# return x | |
def forward(self, sample: torch.FloatTensor) -> torch.FloatTensor: | |
r""" | |
Args: | |
sample (`torch.FloatTensor`): Input sample. | |
""" | |
# h = self.encode(sample) | |
h, emb_loss = self.encode(sample) | |
dec = self.decode(h) | |
# dec, emb_loss = self.decode(h) | |
return dec, emb_loss | |
class AutoencoderKL(nn.Module): | |
r"""Variational Autoencoder (VAE) model with KL loss from the paper Auto-Encoding Variational Bayes by Diederik P. Kingma | |
and Max Welling. | |
This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library | |
implements for all the model (such as downloading or saving, etc.) | |
Parameters: | |
in_channels (int, *optional*, defaults to 3): Number of channels in the input image. | |
out_channels (int, *optional*, defaults to 3): Number of channels in the output. | |
down_block_types (`Tuple[str]`, *optional*, defaults to : | |
obj:`("DownEncoderBlock2D",)`): Tuple of downsample block types. | |
up_block_types (`Tuple[str]`, *optional*, defaults to : | |
obj:`("UpDecoderBlock2D",)`): Tuple of upsample block types. | |
block_out_channels (`Tuple[int]`, *optional*, defaults to : | |
obj:`(64,)`): Tuple of block output channels. | |
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use. | |
latent_channels (`int`, *optional*, defaults to `3`): Number of channels in the latent space. | |
sample_size (`int`, *optional*, defaults to `32`): TODO | |
""" | |
def __init__( | |
self, | |
in_channels: int = 3, | |
out_channels: int = 3, | |
down_block_types: Tuple[str] = ("DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D","DownEncoderBlock2D",), | |
up_block_types: Tuple[str] = ("UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D",), | |
block_out_channels: Tuple[int] = (32, 64, 128, 128), | |
layers_per_block: int = 1, | |
act_fn: str = "silu", | |
latent_channels: int = 3, | |
norm_num_groups: int = 32, | |
sample_size: int = 32, | |
): | |
super().__init__() | |
# pass init params to Encoder | |
self.encoder = Encoder( | |
in_channels=in_channels, | |
out_channels=latent_channels, | |
down_block_types=down_block_types, | |
block_out_channels=block_out_channels, | |
layers_per_block=layers_per_block, | |
act_fn=act_fn, | |
norm_num_groups=norm_num_groups, | |
double_z=True, | |
) | |
# pass init params to Decoder | |
self.decoder = Decoder( | |
in_channels=latent_channels, | |
out_channels=out_channels, | |
up_block_types=up_block_types, | |
block_out_channels=block_out_channels, | |
layers_per_block=layers_per_block, | |
norm_num_groups=norm_num_groups, | |
act_fn=act_fn, | |
) | |
self.quant_conv = torch.nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1) | |
self.post_quant_conv = torch.nn.Conv2d(latent_channels, latent_channels, 1) | |
def encode(self, x: torch.FloatTensor): | |
h = self.encoder(x) | |
moments = self.quant_conv(h) | |
posterior = DiagonalGaussianDistribution(moments) | |
return posterior | |
def decode(self, z: torch.FloatTensor) -> torch.FloatTensor: | |
z = self.post_quant_conv(z) | |
dec = self.decoder(z) | |
return dec | |
def forward( | |
self, | |
sample: torch.FloatTensor, | |
sample_posterior: bool = True, | |
generator: Optional[torch.Generator] = None, | |
) -> torch.FloatTensor: | |
r""" | |
Args: | |
sample (`torch.FloatTensor`): Input sample. | |
sample_posterior (`bool`, *optional*, defaults to `False`): | |
Whether to sample from the posterior. | |
""" | |
x = sample | |
posterior = self.encode(x) | |
if sample_posterior: | |
z = posterior.sample(generator=generator) | |
else: | |
z = posterior.mode() | |
kl_loss = posterior.kl() | |
dec = self.decode(z) | |
return dec, kl_loss | |
class VQVAEWrapper(BasicModel): | |
def __init__( | |
self, | |
in_ch: int = 3, | |
out_ch: int = 3, | |
down_block_types: Tuple[str] = ("DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D",), | |
up_block_types: Tuple[str] = ("UpDecoderBlock2D","UpDecoderBlock2D","UpDecoderBlock2D",), | |
block_out_channels: Tuple[int] = (32, 64, 128, 256, ), | |
layers_per_block: int = 1, | |
act_fn: str = "silu", | |
latent_channels: int = 3, | |
sample_size: int = 32, | |
num_vq_embeddings: int = 64, | |
norm_num_groups: int = 32, | |
optimizer=torch.optim.AdamW, | |
optimizer_kwargs={}, | |
lr_scheduler=None, | |
lr_scheduler_kwargs={}, | |
loss=torch.nn.MSELoss, | |
loss_kwargs={} | |
): | |
super().__init__(optimizer, optimizer_kwargs, lr_scheduler, lr_scheduler_kwargs, loss, loss_kwargs) | |
self.model = VQModel(in_ch, out_ch, down_block_types, up_block_types, block_out_channels, | |
layers_per_block, act_fn, latent_channels, sample_size, num_vq_embeddings, norm_num_groups) | |
def forward(self, sample): | |
return self.model(sample) | |
def encode(self, x): | |
z = self.model.encode(x, return_loss=False) | |
return z | |
def decode(self, z): | |
x = self.model.decode(z) | |
return x | |
def _step(self, batch: dict, batch_idx: int, state: str, step: int, optimizer_idx:int): | |
# ------------------------- Get Source/Target --------------------------- | |
x = batch['source'] | |
target = x | |
# ------------------------- Run Model --------------------------- | |
pred, vq_loss = self(x) | |
# ------------------------- Compute Loss --------------------------- | |
loss = self.loss_fct(pred, target) | |
loss += vq_loss | |
# --------------------- Compute Metrics ------------------------------- | |
results = {'loss':loss} | |
with torch.no_grad(): | |
results['L2'] = torch.nn.functional.mse_loss(pred, target) | |
results['L1'] = torch.nn.functional.l1_loss(pred, target) | |
# ----------------- Log Scalars ---------------------- | |
for metric_name, metric_val in results.items(): | |
self.log(f"{state}/{metric_name}", metric_val, batch_size=x.shape[0], on_step=True, on_epoch=True) | |
# ----------------- Save Image ------------------------------ | |
if self.global_step != 0 and self.global_step % self.trainer.log_every_n_steps == 0: | |
def norm(x): | |
return (x-x.min())/(x.max()-x.min()) | |
images = [x, pred] | |
log_step = self.global_step // self.trainer.log_every_n_steps | |
path_out = Path(self.logger.log_dir)/'images' | |
path_out.mkdir(parents=True, exist_ok=True) | |
images = torch.cat([norm(img) for img in images]) | |
save_image(images, path_out/f'sample_{log_step}.png') | |
return loss | |
def hinge_d_loss(logits_real, logits_fake): | |
loss_real = torch.mean(F.relu(1. - logits_real)) | |
loss_fake = torch.mean(F.relu(1. + logits_fake)) | |
d_loss = 0.5 * (loss_real + loss_fake) | |
return d_loss | |
def vanilla_d_loss(logits_real, logits_fake): | |
d_loss = 0.5 * ( | |
torch.mean(F.softplus(-logits_real)) + | |
torch.mean(F.softplus(logits_fake))) | |
return d_loss | |
class VQGAN(BasicModel): | |
def __init__( | |
self, | |
in_ch: int = 3, | |
out_ch: int = 3, | |
down_block_types: Tuple[str] = ("DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D",), | |
up_block_types: Tuple[str] = ("UpDecoderBlock2D","UpDecoderBlock2D","UpDecoderBlock2D",), | |
block_out_channels: Tuple[int] = (32, 64, 128, 256, ), | |
layers_per_block: int = 1, | |
act_fn: str = "silu", | |
latent_channels: int = 3, | |
sample_size: int = 32, | |
num_vq_embeddings: int = 64, | |
norm_num_groups: int = 32, | |
start_gan_train_step = 50000, # NOTE step increase with each optimizer | |
gan_loss_weight: float = 1.0, # alias discriminator | |
perceptual_loss_weight: float = 1.0, | |
embedding_loss_weight: float = 1.0, | |
optimizer=torch.optim.AdamW, | |
optimizer_kwargs={}, | |
lr_scheduler=None, | |
lr_scheduler_kwargs={}, | |
loss=torch.nn.MSELoss, | |
loss_kwargs={} | |
): | |
super().__init__(optimizer, optimizer_kwargs, lr_scheduler, lr_scheduler_kwargs, loss, loss_kwargs) | |
self.vqvae = VQModel(in_ch, out_ch, down_block_types, up_block_types, block_out_channels, layers_per_block, act_fn, | |
latent_channels, sample_size, num_vq_embeddings, norm_num_groups) | |
self.discriminator = NLayerDiscriminator(in_ch) | |
# self.perceiver = ... # Currently not supported, would require another trained NN | |
self.start_gan_train_step = start_gan_train_step | |
self.perceptual_loss_weight = perceptual_loss_weight | |
self.gan_loss_weight = gan_loss_weight | |
self.embedding_loss_weight = embedding_loss_weight | |
def forward(self, x, condition=None): | |
return self.vqvae(x) | |
def encode(self, x): | |
z = self.vqvae.encode(x, return_loss=False) | |
return z | |
def decode(self, z): | |
x = self.vqvae.decode(z) | |
return x | |
def compute_lambda(self, rec_loss, gan_loss, eps=1e-4): | |
"""Computes adaptive weight as proposed in eq. 7 of https://arxiv.org/abs/2012.09841""" | |
last_layer = self.vqvae.decoder.conv_out.weight | |
rec_grads = torch.autograd.grad(rec_loss, last_layer, retain_graph=True)[0] | |
gan_grads = torch.autograd.grad(gan_loss, last_layer, retain_graph=True)[0] | |
d_weight = torch.norm(rec_grads) / (torch.norm(gan_grads) + eps) | |
d_weight = torch.clamp(d_weight, 0.0, 1e4) | |
return d_weight.detach() | |
def _step(self, batch: dict, batch_idx: int, state: str, step: int, optimizer_idx:int): | |
x = batch['source'] | |
# condition = batch.get('target', None) | |
pred, vq_emb_loss = self.vqvae(x) | |
if optimizer_idx == 0: | |
# ------ VAE ------- | |
vq_img_loss = F.mse_loss(pred, x) | |
vq_per_loss = 0.0 #self.perceiver(pred, x) | |
rec_loss = vq_img_loss+self.perceptual_loss_weight*vq_per_loss | |
# ------- GAN ----- | |
if step > self.start_gan_train_step: | |
gan_loss = -torch.mean(self.discriminator(pred)) | |
lambda_weight = self.compute_lambda(rec_loss, gan_loss) | |
gan_loss = gan_loss*lambda_weight | |
else: | |
gan_loss = torch.tensor([0.0], requires_grad=True, device=x.device) | |
loss = self.gan_loss_weight*gan_loss+rec_loss+self.embedding_loss_weight*vq_emb_loss | |
elif optimizer_idx == 1: | |
if step > self.start_gan_train_step//2: | |
logits_real = self.discriminator(x.detach()) | |
logits_fake = self.discriminator(pred.detach()) | |
loss = hinge_d_loss(logits_real, logits_fake) | |
else: | |
loss = torch.tensor([0.0], requires_grad=True, device=x.device) | |
# --------------------- Compute Metrics ------------------------------- | |
results = {'loss':loss.detach(), f'loss_{optimizer_idx}':loss.detach()} | |
with torch.no_grad(): | |
results[f'L2'] = torch.nn.functional.mse_loss(pred, x) | |
results[f'L1'] = torch.nn.functional.l1_loss(pred, x) | |
# ----------------- Log Scalars ---------------------- | |
for metric_name, metric_val in results.items(): | |
self.log(f"{state}/{metric_name}", metric_val, batch_size=x.shape[0], on_step=True, on_epoch=True) | |
# ----------------- Save Image ------------------------------ | |
if self.global_step != 0 and self.global_step % self.trainer.log_every_n_steps == 0: # NOTE: step 1 (opt1) , step=2 (opt2), step=3 (opt1), ... | |
def norm(x): | |
return (x-x.min())/(x.max()-x.min()) | |
images = torch.cat([x, pred]) | |
log_step = self.global_step // self.trainer.log_every_n_steps | |
path_out = Path(self.logger.log_dir)/'images' | |
path_out.mkdir(parents=True, exist_ok=True) | |
images = torch.stack([norm(img) for img in images]) | |
save_image(images, path_out/f'sample_{log_step}.png') | |
return loss | |
def configure_optimizers(self): | |
opt_vae = self.optimizer(self.vqvae.parameters(), **self.optimizer_kwargs) | |
opt_disc = self.optimizer(self.discriminator.parameters(), **self.optimizer_kwargs) | |
if self.lr_scheduler is not None: | |
scheduler = [ | |
{ | |
'scheduler': self.lr_scheduler(opt_vae, **self.lr_scheduler_kwargs), | |
'interval': 'step', | |
'frequency': 1 | |
}, | |
{ | |
'scheduler': self.lr_scheduler(opt_disc, **self.lr_scheduler_kwargs), | |
'interval': 'step', | |
'frequency': 1 | |
}, | |
] | |
else: | |
scheduler = [] | |
return [opt_vae, opt_disc], scheduler | |
class VAEWrapper(BasicModel): | |
def __init__( | |
self, | |
in_ch: int = 3, | |
out_ch: int = 3, | |
down_block_types: Tuple[str] = ("DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"), # "DownEncoderBlock2D", "DownEncoderBlock2D", | |
up_block_types: Tuple[str] = ("UpDecoderBlock2D", "UpDecoderBlock2D","UpDecoderBlock2D" ), # "UpDecoderBlock2D", "UpDecoderBlock2D", | |
block_out_channels: Tuple[int] = (32, 64, 128, 256), # 128, 256 | |
layers_per_block: int = 1, | |
act_fn: str = "silu", | |
latent_channels: int = 3, | |
norm_num_groups: int = 32, | |
sample_size: int = 32, | |
optimizer=torch.optim.AdamW, | |
optimizer_kwargs={'lr':1e-4, 'weight_decay':1e-3, 'amsgrad':True}, | |
lr_scheduler=None, | |
lr_scheduler_kwargs={}, | |
# loss=torch.nn.MSELoss, # WARNING: No Effect | |
# loss_kwargs={'reduction': 'mean'} | |
): | |
super().__init__(optimizer, optimizer_kwargs, lr_scheduler, lr_scheduler_kwargs ) # loss, loss_kwargs | |
self.model = AutoencoderKL(in_ch, out_ch, down_block_types, up_block_types, block_out_channels, | |
layers_per_block, act_fn, latent_channels, norm_num_groups, sample_size) | |
self.logvar = nn.Parameter(torch.zeros(size=())) # Better weighting between KL and MSE, see (https://arxiv.org/abs/1903.05789), also used by Taming-Transfomer/Stable Diffusion | |
def forward(self, sample): | |
return self.model(sample) | |
def encode(self, x): | |
z = self.model.encode(x) # Latent space but not yet mapped to discrete embedding vectors | |
return z.sample(generator=None) | |
def decode(self, z): | |
x = self.model.decode(z) | |
return x | |
def _step(self, batch: dict, batch_idx: int, state: str, step: int, optimizer_idx:int): | |
# ------------------------- Get Source/Target --------------------------- | |
x = batch['source'] | |
target = x | |
HALF_LOG_TWO_PI = 0.91893 # log(2pi)/2 | |
# ------------------------- Run Model --------------------------- | |
pred, kl_loss = self(x) | |
# ------------------------- Compute Loss --------------------------- | |
loss = torch.sum( torch.square(pred-target))/x.shape[0] #torch.sum( torch.square((pred-target)/torch.exp(self.logvar))/2 + self.logvar + HALF_LOG_TWO_PI )/x.shape[0] | |
loss += kl_loss | |
# --------------------- Compute Metrics ------------------------------- | |
results = {'loss':loss.detach()} | |
with torch.no_grad(): | |
results['L2'] = torch.nn.functional.mse_loss(pred, target) | |
results['L1'] = torch.nn.functional.l1_loss(pred, target) | |
# ----------------- Log Scalars ---------------------- | |
for metric_name, metric_val in results.items(): | |
self.log(f"{state}/{metric_name}", metric_val, batch_size=x.shape[0], on_step=True, on_epoch=True) | |
# ----------------- Save Image ------------------------------ | |
if self.global_step != 0 and self.global_step % self.trainer.log_every_n_steps == 0: | |
def norm(x): | |
return (x-x.min())/(x.max()-x.min()) | |
images = torch.cat([x, pred]) | |
log_step = self.global_step // self.trainer.log_every_n_steps | |
path_out = Path(self.logger.log_dir)/'images' | |
path_out.mkdir(parents=True, exist_ok=True) | |
images = torch.stack([norm(img) for img in images]) | |
save_image(images, path_out/f'sample_{log_step}.png') | |
return loss |