File size: 10,136 Bytes
49fea9e 98fb533 49fea9e 98fb533 49fea9e 1f8598c 49fea9e 1f8598c 98fb533 49fea9e 98fb533 49fea9e 1f8598c 49fea9e 98fb533 49fea9e 98fb533 49fea9e 98fb533 49fea9e 1f8598c 49fea9e 1f8598c 98fb533 49fea9e 98fb533 1f8598c 98fb533 1f8598c 49fea9e 1f8598c 98fb533 49fea9e 98fb533 49fea9e 98fb533 49fea9e 98fb533 1f8598c 98fb533 49fea9e 98fb533 1f8598c 98fb533 49fea9e 98fb533 1f8598c 49fea9e 1f8598c 49fea9e 98fb533 7d539c2 98fb533 7d539c2 98fb533 1f8598c 7d539c2 98fb533 1f8598c 98fb533 1f8598c 98fb533 1f8598c 98fb533 1f8598c 98fb533 1f8598c 98fb533 1f8598c 98fb533 1f8598c 49fea9e 98fb533 49fea9e 98fb533 1f8598c 98fb533 7d539c2 98fb533 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
import gradio as gr
from dotenv import load_dotenv
from roboflow import Roboflow
import tempfile
import os
import requests
import cv2
import numpy as np
import subprocess
# ========== Konfigurasi ==========
load_dotenv()
# Roboflow Config
rf_api_key = os.getenv("ROBOFLOW_API_KEY")
workspace = os.getenv("ROBOFLOW_WORKSPACE")
project_name = os.getenv("ROBOFLOW_PROJECT")
model_version = int(os.getenv("ROBOFLOW_MODEL_VERSION"))
# CountGD Config
COUNTGD_PROMPT = "beverage . bottle . cans . mixed box" # Sesuaikan prompt sesuai kebutuhan
COUNTGD_API_KEY = os.getenv("COUNTGD_API_KEY") # API key CountGD
# Inisialisasi Model YOLO dari Roboflow
rf = Roboflow(api_key=rf_api_key)
project = rf.workspace(workspace).project(project_name)
yolo_model = project.version(model_version).model
# ========== Fungsi Deteksi Kombinasi ==========
def detect_combined(image):
# Simpan gambar ke file temporer
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
image.save(temp_file, format="JPEG")
temp_path = temp_file.name
try:
# ========== [1] Deteksi Produk Nestlé dengan YOLO ==========
yolo_pred = yolo_model.predict(temp_path, confidence=50, overlap=80).json()
# Hitung per kelas dan simpan bounding box (format: (x_center, y_center, width, height))
nestle_class_count = {}
nestle_boxes = []
for pred in yolo_pred.get('predictions', []):
class_name = pred['class']
nestle_class_count[class_name] = nestle_class_count.get(class_name, 0) + 1
nestle_boxes.append((pred['x'], pred['y'], pred['width'], pred['height']))
total_nestle = sum(nestle_class_count.values())
# ========== [2] Deteksi Kompetitor dengan CountGD ==========
countgd_url = "https://api.landing.ai/v1/tools/text-to-object-detection"
with open(temp_path, "rb") as image_file:
files = {"image": image_file}
data = {
"prompts": [COUNTGD_PROMPT],
"model": "countgd"
}
headers = {
"Authorization": f"Basic {COUNTGD_API_KEY}",
"Content-Type": "multipart/form-data"
}
response = requests.post(countgd_url, files=files, data=data, headers=headers)
countgd_pred = response.json()
competitor_class_count = {}
competitor_boxes = []
# Asumsikan respons JSON mengandung key "predictions" berupa daftar objek
for obj in countgd_pred.get("predictions", []):
countgd_box = obj.get("bbox") # Format: [x1, y1, x2, y2]
# Lakukan filter untuk menghindari duplikasi dengan deteksi YOLO
if not is_overlap(countgd_box, nestle_boxes):
class_name = obj.get("class", "").strip().lower()
competitor_class_count[class_name] = competitor_class_count.get(class_name, 0) + 1
competitor_boxes.append({
"class": class_name,
"box": countgd_box,
"confidence": obj.get("score", 0)
})
total_competitor = sum(competitor_class_count.values())
# ========== [3] Format Output ==========
result_text = "Product Nestlé\n\n"
for class_name, count in nestle_class_count.items():
result_text += f"{class_name}: {count}\n"
result_text += f"\nTotal Products Nestlé: {total_nestle}\n\n"
if competitor_class_count:
result_text += f"Total Unclassified Products: {total_competitor}\n"
else:
result_text += "No Unclassified Products detected\n"
# ========== [4] Visualisasi ==========
img = cv2.imread(temp_path)
# Tandai bounding box untuk produk Nestlé (warna hijau)
for pred in yolo_pred.get('predictions', []):
x, y, w, h = pred['x'], pred['y'], pred['width'], pred['height']
cv2.rectangle(img, (int(x - w/2), int(y - h/2)), (int(x + w/2), int(y + h/2)), (0, 255, 0), 2)
cv2.putText(img, pred['class'], (int(x - w/2), int(y - h/2 - 10)),
cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 255, 0), 3)
# Tandai bounding box untuk kompetitor (warna merah)
for comp in competitor_boxes:
x1, y1, x2, y2 = comp['box']
# Ubah nama kelas menjadi 'unclassified' jika sesuai dengan daftar target
unclassified_classes = ["beverage", "cans", "bottle", "mixed box"]
display_name = "unclassified" if any(uc in comp['class'] for uc in unclassified_classes) else comp['class']
cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), (0, 0, 255), 2)
cv2.putText(img, f"{display_name} {comp['confidence']:.2f}",
(int(x1), int(y1-10)), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 255), 3)
output_path = "/tmp/combined_output.jpg"
cv2.imwrite(output_path, img)
return output_path, result_text
except Exception as e:
return temp_path, f"Error: {str(e)}"
finally:
os.remove(temp_path)
def is_overlap(box1, boxes2, threshold=0.3):
"""
Fungsi untuk mendeteksi overlap antara bounding box dari CountGD (format: [x1, y1, x2, y2])
dan bounding box YOLO (format: (x_center, y_center, width, height)).
"""
x1_min, y1_min, x1_max, y1_max = box1
for b2 in boxes2:
x2, y2, w2, h2 = b2
x2_min = x2 - w2/2
x2_max = x2 + w2/2
y2_min = y2 - h2/2
y2_max = y2 + h2/2
dx = min(x1_max, x2_max) - max(x1_min, x2_min)
dy = min(y1_max, y2_max) - max(y1_min, y2_min)
if dx >= 0 and dy >= 0:
area_overlap = dx * dy
area_box1 = (x1_max - x1_min) * (y1_max - y1_min)
if area_overlap / area_box1 > threshold:
return True
return False
# ========== Fungsi untuk Deteksi Video ==========
def convert_video_to_mp4(input_path, output_path):
try:
subprocess.run(['ffmpeg', '-i', input_path, '-vcodec', 'libx264', '-acodec', 'aac', output_path], check=True)
return output_path
except subprocess.CalledProcessError as e:
return None, f"Error converting video: {e}"
def detect_objects_in_video(video_path):
temp_output_path = "/tmp/output_video.mp4"
temp_frames_dir = tempfile.mkdtemp()
frame_count = 0
previous_detections = {}
try:
if not video_path.endswith(".mp4"):
video_path, err = convert_video_to_mp4(video_path, temp_output_path)
if not video_path:
return None, f"Video conversion error: {err}"
video = cv2.VideoCapture(video_path)
frame_rate = int(video.get(cv2.CAP_PROP_FPS))
frame_width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
frame_size = (frame_width, frame_height)
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
output_video = cv2.VideoWriter(temp_output_path, fourcc, frame_rate, frame_size)
while True:
ret, frame = video.read()
if not ret:
break
frame_path = os.path.join(temp_frames_dir, f"frame_{frame_count}.jpg")
cv2.imwrite(frame_path, frame)
predictions = yolo_model.predict(frame_path, confidence=50, overlap=80).json()
current_detections = {}
for prediction in predictions.get('predictions', []):
class_name = prediction['class']
x, y, w, h = prediction['x'], prediction['y'], prediction['width'], prediction['height']
object_id = f"{class_name}_{x}_{y}_{w}_{h}"
if object_id not in current_detections:
current_detections[object_id] = class_name
cv2.rectangle(frame, (int(x - w/2), int(y - h/2)),
(int(x + w/2), int(y + h/2)), (0, 255, 0), 2)
cv2.putText(frame, class_name, (int(x - w/2), int(y - h/2 - 10)),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
object_counts = {}
for detection_id, class_name in current_detections.items():
object_counts[class_name] = object_counts.get(class_name, 0) + 1
count_text = ""
total_product_count = 0
for class_name, count in object_counts.items():
count_text += f"{class_name}: {count}\n"
total_product_count += count
count_text += f"\nTotal Product: {total_product_count}"
y_offset = 20
for line in count_text.split("\n"):
cv2.putText(frame, line, (10, y_offset),
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
y_offset += 30
output_video.write(frame)
frame_count += 1
previous_detections = current_detections
video.release()
output_video.release()
return temp_output_path
except Exception as e:
return None, f"An error occurred: {e}"
# ========== Gradio Interface ==========
with gr.Blocks(theme=gr.themes.Base(primary_hue="teal", secondary_hue="teal", neutral_hue="slate")) as iface:
gr.Markdown("""<div style="text-align: center;"><h1>NESTLE - STOCK COUNTING</h1></div>""")
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil", label="Input Image")
detect_image_button = gr.Button("Detect Image")
output_image = gr.Image(label="Detect Object")
output_text = gr.Textbox(label="Counting Object")
detect_image_button.click(fn=detect_combined, inputs=input_image, outputs=[output_image, output_text])
with gr.Column():
input_video = gr.Video(label="Input Video")
detect_video_button = gr.Button("Detect Video")
output_video = gr.Video(label="Output Video")
detect_video_button.click(fn=detect_objects_in_video, inputs=input_video, outputs=[output_video])
iface.launch()
|