File size: 10,136 Bytes
49fea9e
 
 
 
 
98fb533
49fea9e
 
98fb533
49fea9e
1f8598c
49fea9e
 
 
 
 
 
 
 
1f8598c
98fb533
 
49fea9e
98fb533
49fea9e
 
 
 
1f8598c
49fea9e
98fb533
49fea9e
 
 
 
 
98fb533
 
 
 
49fea9e
 
98fb533
49fea9e
 
 
1f8598c
49fea9e
1f8598c
98fb533
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49fea9e
 
98fb533
 
 
 
 
 
1f8598c
 
 
98fb533
 
1f8598c
 
49fea9e
1f8598c
 
98fb533
49fea9e
 
98fb533
49fea9e
98fb533
49fea9e
98fb533
1f8598c
 
98fb533
 
 
49fea9e
98fb533
 
 
1f8598c
98fb533
49fea9e
98fb533
 
 
 
 
 
 
1f8598c
49fea9e
 
 
 
1f8598c
49fea9e
 
 
 
 
98fb533
7d539c2
98fb533
 
7d539c2
98fb533
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f8598c
 
7d539c2
98fb533
 
 
 
 
 
 
1f8598c
98fb533
 
 
 
 
1f8598c
98fb533
 
 
 
 
 
 
 
 
 
 
1f8598c
98fb533
 
 
 
1f8598c
 
98fb533
 
1f8598c
98fb533
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f8598c
98fb533
1f8598c
 
49fea9e
98fb533
49fea9e
 
 
 
98fb533
 
 
1f8598c
 
 
98fb533
 
7d539c2
98fb533
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import gradio as gr
from dotenv import load_dotenv
from roboflow import Roboflow
import tempfile
import os
import requests
import cv2
import numpy as np
import subprocess

# ========== Konfigurasi ==========
load_dotenv()

# Roboflow Config
rf_api_key = os.getenv("ROBOFLOW_API_KEY")
workspace = os.getenv("ROBOFLOW_WORKSPACE")
project_name = os.getenv("ROBOFLOW_PROJECT")
model_version = int(os.getenv("ROBOFLOW_MODEL_VERSION"))

# CountGD Config
COUNTGD_PROMPT = "beverage . bottle . cans . mixed box"  # Sesuaikan prompt sesuai kebutuhan
COUNTGD_API_KEY = os.getenv("COUNTGD_API_KEY")       # API key CountGD

# Inisialisasi Model YOLO dari Roboflow
rf = Roboflow(api_key=rf_api_key)
project = rf.workspace(workspace).project(project_name)
yolo_model = project.version(model_version).model

# ========== Fungsi Deteksi Kombinasi ==========
def detect_combined(image):
    # Simpan gambar ke file temporer
    with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
        image.save(temp_file, format="JPEG")
        temp_path = temp_file.name

    try:
        # ========== [1] Deteksi Produk Nestlé dengan YOLO ==========
        yolo_pred = yolo_model.predict(temp_path, confidence=50, overlap=80).json()

        # Hitung per kelas dan simpan bounding box (format: (x_center, y_center, width, height))
        nestle_class_count = {}
        nestle_boxes = []
        for pred in yolo_pred.get('predictions', []):
            class_name = pred['class']
            nestle_class_count[class_name] = nestle_class_count.get(class_name, 0) + 1
            nestle_boxes.append((pred['x'], pred['y'], pred['width'], pred['height']))

        total_nestle = sum(nestle_class_count.values())

        # ========== [2] Deteksi Kompetitor dengan CountGD ==========
        countgd_url = "https://api.landing.ai/v1/tools/text-to-object-detection"
        with open(temp_path, "rb") as image_file:
            files = {"image": image_file}
            data = {
                "prompts": [COUNTGD_PROMPT],
                "model": "countgd"
            }
            headers = {
                "Authorization": f"Basic {COUNTGD_API_KEY}",
                "Content-Type": "multipart/form-data"
            }
            response = requests.post(countgd_url, files=files, data=data, headers=headers)
        countgd_pred = response.json()

        competitor_class_count = {}
        competitor_boxes = []
        # Asumsikan respons JSON mengandung key "predictions" berupa daftar objek
        for obj in countgd_pred.get("predictions", []):
            countgd_box = obj.get("bbox")  # Format: [x1, y1, x2, y2]
            # Lakukan filter untuk menghindari duplikasi dengan deteksi YOLO
            if not is_overlap(countgd_box, nestle_boxes):
                class_name = obj.get("class", "").strip().lower()
                competitor_class_count[class_name] = competitor_class_count.get(class_name, 0) + 1
                competitor_boxes.append({
                    "class": class_name,
                    "box": countgd_box,
                    "confidence": obj.get("score", 0)
                })

        total_competitor = sum(competitor_class_count.values())

        # ========== [3] Format Output ==========
        result_text = "Product Nestlé\n\n"
        for class_name, count in nestle_class_count.items():
            result_text += f"{class_name}: {count}\n"
        result_text += f"\nTotal Products Nestlé: {total_nestle}\n\n"
        if competitor_class_count:
            result_text += f"Total Unclassified Products: {total_competitor}\n"
        else:
            result_text += "No Unclassified Products detected\n"

        # ========== [4] Visualisasi ==========
        img = cv2.imread(temp_path)
        # Tandai bounding box untuk produk Nestlé (warna hijau)
        for pred in yolo_pred.get('predictions', []):
            x, y, w, h = pred['x'], pred['y'], pred['width'], pred['height']
            cv2.rectangle(img, (int(x - w/2), int(y - h/2)), (int(x + w/2), int(y + h/2)), (0, 255, 0), 2)
            cv2.putText(img, pred['class'], (int(x - w/2), int(y - h/2 - 10)),
                        cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 255, 0), 3)

        # Tandai bounding box untuk kompetitor (warna merah)
        for comp in competitor_boxes:
            x1, y1, x2, y2 = comp['box']
            # Ubah nama kelas menjadi 'unclassified' jika sesuai dengan daftar target
            unclassified_classes = ["beverage", "cans", "bottle", "mixed box"]
            display_name = "unclassified" if any(uc in comp['class'] for uc in unclassified_classes) else comp['class']
            cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), (0, 0, 255), 2)
            cv2.putText(img, f"{display_name} {comp['confidence']:.2f}",
                        (int(x1), int(y1-10)), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 255), 3)

        output_path = "/tmp/combined_output.jpg"
        cv2.imwrite(output_path, img)

        return output_path, result_text

    except Exception as e:
        return temp_path, f"Error: {str(e)}"
    finally:
        os.remove(temp_path)

def is_overlap(box1, boxes2, threshold=0.3):
    """
    Fungsi untuk mendeteksi overlap antara bounding box dari CountGD (format: [x1, y1, x2, y2])
    dan bounding box YOLO (format: (x_center, y_center, width, height)).
    """
    x1_min, y1_min, x1_max, y1_max = box1
    for b2 in boxes2:
        x2, y2, w2, h2 = b2
        x2_min = x2 - w2/2
        x2_max = x2 + w2/2
        y2_min = y2 - h2/2
        y2_max = y2 + h2/2

        dx = min(x1_max, x2_max) - max(x1_min, x2_min)
        dy = min(y1_max, y2_max) - max(y1_min, y2_min)
        if dx >= 0 and dy >= 0:
            area_overlap = dx * dy
            area_box1 = (x1_max - x1_min) * (y1_max - y1_min)
            if area_overlap / area_box1 > threshold:
                return True
    return False

# ========== Fungsi untuk Deteksi Video ==========
def convert_video_to_mp4(input_path, output_path):
    try:
        subprocess.run(['ffmpeg', '-i', input_path, '-vcodec', 'libx264', '-acodec', 'aac', output_path], check=True)
        return output_path
    except subprocess.CalledProcessError as e:
        return None, f"Error converting video: {e}"

def detect_objects_in_video(video_path):
    temp_output_path = "/tmp/output_video.mp4"
    temp_frames_dir = tempfile.mkdtemp()
    frame_count = 0
    previous_detections = {}

    try:
        if not video_path.endswith(".mp4"):
            video_path, err = convert_video_to_mp4(video_path, temp_output_path)
            if not video_path:
                return None, f"Video conversion error: {err}"

        video = cv2.VideoCapture(video_path)
        frame_rate = int(video.get(cv2.CAP_PROP_FPS))
        frame_width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
        frame_height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
        frame_size = (frame_width, frame_height)

        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
        output_video = cv2.VideoWriter(temp_output_path, fourcc, frame_rate, frame_size)

        while True:
            ret, frame = video.read()
            if not ret:
                break

            frame_path = os.path.join(temp_frames_dir, f"frame_{frame_count}.jpg")
            cv2.imwrite(frame_path, frame)

            predictions = yolo_model.predict(frame_path, confidence=50, overlap=80).json()
            current_detections = {}
            for prediction in predictions.get('predictions', []):
                class_name = prediction['class']
                x, y, w, h = prediction['x'], prediction['y'], prediction['width'], prediction['height']
                object_id = f"{class_name}_{x}_{y}_{w}_{h}"
                if object_id not in current_detections:
                    current_detections[object_id] = class_name

                cv2.rectangle(frame, (int(x - w/2), int(y - h/2)),
                              (int(x + w/2), int(y + h/2)), (0, 255, 0), 2)
                cv2.putText(frame, class_name, (int(x - w/2), int(y - h/2 - 10)),
                            cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)

            object_counts = {}
            for detection_id, class_name in current_detections.items():
                object_counts[class_name] = object_counts.get(class_name, 0) + 1

            count_text = ""
            total_product_count = 0
            for class_name, count in object_counts.items():
                count_text += f"{class_name}: {count}\n"
                total_product_count += count
            count_text += f"\nTotal Product: {total_product_count}"

            y_offset = 20
            for line in count_text.split("\n"):
                cv2.putText(frame, line, (10, y_offset),
                            cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
                y_offset += 30

            output_video.write(frame)
            frame_count += 1
            previous_detections = current_detections

        video.release()
        output_video.release()
        return temp_output_path

    except Exception as e:
        return None, f"An error occurred: {e}"

# ========== Gradio Interface ==========
with gr.Blocks(theme=gr.themes.Base(primary_hue="teal", secondary_hue="teal", neutral_hue="slate")) as iface:
    gr.Markdown("""<div style="text-align: center;"><h1>NESTLE - STOCK COUNTING</h1></div>""")
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(type="pil", label="Input Image")
            detect_image_button = gr.Button("Detect Image")
            output_image = gr.Image(label="Detect Object")
            output_text = gr.Textbox(label="Counting Object")
            detect_image_button.click(fn=detect_combined, inputs=input_image, outputs=[output_image, output_text])
        with gr.Column():
            input_video = gr.Video(label="Input Video")
            detect_video_button = gr.Button("Detect Video")
            output_video = gr.Video(label="Output Video")
            detect_video_button.click(fn=detect_objects_in_video, inputs=input_video, outputs=[output_video])
            
iface.launch()