File size: 10,230 Bytes
bd977a3
bf1fd9f
 
 
 
 
 
0f3d01e
bf1fd9f
 
b60852c
bf1fd9f
 
 
 
 
 
 
 
b60852c
 
 
bf1fd9f
b60852c
bf1fd9f
 
 
 
b60852c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf1fd9f
b60852c
bf1fd9f
 
 
 
56ff081
bf1fd9f
b60852c
bf1fd9f
 
b60852c
bf1fd9f
 
 
 
 
56ff081
b60852c
56ff081
 
 
b60852c
56ff081
 
 
bf1fd9f
b60852c
56ff081
 
 
b60852c
 
 
 
 
 
 
 
bf1fd9f
56ff081
b60852c
56ff081
bf1fd9f
 
56ff081
b60852c
 
 
 
56ff081
b60852c
bf1fd9f
b60852c
bf1fd9f
 
b60852c
 
 
 
 
 
 
 
 
 
 
56ff081
bf1fd9f
 
 
56ff081
bf1fd9f
 
56ff081
bf1fd9f
b60852c
 
bf1fd9f
b60852c
bf1fd9f
 
 
 
 
 
 
 
 
 
 
b60852c
bf1fd9f
 
 
 
 
 
 
 
b60852c
bf1fd9f
 
 
 
 
 
b60852c
bf1fd9f
 
 
 
 
 
 
 
b60852c
bf1fd9f
 
 
b60852c
bf1fd9f
 
b60852c
bf1fd9f
 
 
 
 
 
 
b60852c
 
 
 
 
bf1fd9f
b60852c
bf1fd9f
b60852c
 
 
bf1fd9f
 
 
b60852c
 
bf1fd9f
 
 
 
b60852c
 
bf1fd9f
 
 
 
 
 
 
 
 
 
 
 
 
b60852c
bf1fd9f
 
0f3d01e
bf1fd9f
 
 
 
 
 
 
 
 
 
 
 
 
b60852c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import gradio as gr
from dotenv import load_dotenv
from roboflow import Roboflow
import tempfile
import os
import requests
import cv2
import numpy as np
import subprocess

# ========== Load Environment Variables ==========
load_dotenv()

# Roboflow Config
rf_api_key = os.getenv("ROBOFLOW_API_KEY")
workspace = os.getenv("ROBOFLOW_WORKSPACE")
project_name = os.getenv("ROBOFLOW_PROJECT")
model_version = int(os.getenv("ROBOFLOW_MODEL_VERSION"))

# CountGD Config (Replace DINO-X)
# Set your CountGD API key in your .env file (e.g., COUNTGD_API_KEY=YourEncodedAPIKey)
COUNTGD_API_KEY = os.getenv("COUNTGD_API_KEY")

# Inisialisasi YOLO Model from Roboflow
rf = Roboflow(api_key=rf_api_key)
project = rf.workspace(workspace).project(project_name)
yolo_model = project.version(model_version).model

# ========== Function to Check Overlap ==========
def is_overlap(box1, boxes2, threshold=0.3):
    """
    Checks if box1 (format: (x_min, y_min, x_max, y_max)) overlaps with any boxes in boxes2.
    boxes2 is a list of YOLO bounding boxes in the format (x_center, y_center, width, height).
    Returns True if the overlap ratio of box1 is greater than the threshold.
    """
    x1_min, y1_min, x1_max, y1_max = box1
    for b2 in boxes2:
        x_center, y_center, w2, h2 = b2
        x2_min = x_center - w2 / 2
        x2_max = x_center + w2 / 2
        y2_min = y_center - h2 / 2
        y2_max = y_center + h2 / 2

        # Calculate overlap area
        dx = min(x1_max, x2_max) - max(x1_min, x2_min)
        dy = min(y1_max, y2_max) - max(y1_min, y2_min)
        if dx > 0 and dy > 0:
            area_overlap = dx * dy
            area_box1 = (x1_max - x1_min) * (y1_max - y1_min)
            if area_box1 > 0 and (area_overlap / area_box1) > threshold:
                return True
    return False

# ========== Combined Object Detection Function ==========
def detect_combined(image):
    with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
        image.save(temp_file, format="JPEG")
        temp_path = temp_file.name
    
    try:
        # ===== YOLO Detection (Nestlé products) =====
        yolo_pred = yolo_model.predict(temp_path, confidence=50, overlap=80).json()
        nestle_class_count = {}
        nestle_boxes = []  # List to hold YOLO bounding boxes (format: x_center, y_center, width, height)
        for pred in yolo_pred['predictions']:
            class_name = pred['class']
            nestle_class_count[class_name] = nestle_class_count.get(class_name, 0) + 1
            nestle_boxes.append((pred['x'], pred['y'], pred['width'], pred['height']))
        total_nestle = sum(nestle_class_count.values())
        
        # ===== CountGD Detection (Competitor products) =====
        url = "https://api.landing.ai/v1/tools/text-to-object-detection"
        files = {"image": open(temp_path, "rb")}
        data = {"prompts": ["mixed box"], "model": "countgd"}
        headers = {"Authorization": f"Basic {COUNTGD_API_KEY}"}
        response = requests.post(url, files=files, data=data, headers=headers)
        result = response.json()
        
        competitor_class_count = {}
        competitor_boxes = []  # List to hold CountGD bounding boxes (format: x_min, y_min, x_max, y_max)
        if 'data' in result:
            for obj in result['data'][0]:
                if 'bounding_box' in obj:
                    # CountGD returns bounding_box as [x_min, y_min, x_max, y_max]
                    x1, y1, x2, y2 = obj['bounding_box']
                    countgd_box = (x1, y1, x2, y2)
                    # Only add CountGD detection if it does NOT significantly overlap with any YOLO detection
                    if not is_overlap(countgd_box, nestle_boxes, threshold=0.3):
                        class_name = "unclassified"  # Generic label for competitor objects
                        competitor_class_count[class_name] = competitor_class_count.get(class_name, 0) + 1
                        competitor_boxes.append(countgd_box)
        total_competitor = sum(competitor_class_count.values())
        
        # ===== Format Output Text =====
        result_text = "Product Nestlé\n\n"
        for class_name, count in nestle_class_count.items():
            result_text += f"{class_name}: {count}\n"
        result_text += f"\nTotal Products Nestlé: {total_nestle}\n\n"
        if total_competitor:
            result_text += f"Total Unclassified Products: {total_competitor}\n"
        else:
            result_text += "No Unclassified Products detected\n"
        
        # ===== Visualization =====
        img = cv2.imread(temp_path)
        # Draw YOLO boxes in green
        for pred in yolo_pred['predictions']:
            x, y, w, h = pred['x'], pred['y'], pred['width'], pred['height']
            pt1 = (int(x - w/2), int(y - h/2))
            pt2 = (int(x + w/2), int(y + h/2))
            cv2.rectangle(img, pt1, pt2, (0, 255, 0), 2)
            cv2.putText(img, pred['class'], (pt1[0], pt1[1]-10),
                        cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0,255,0), 3)
        # Draw CountGD boxes in red
        for box in competitor_boxes:
            x1, y1, x2, y2 = box
            cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), (0, 0, 255), 2)
            cv2.putText(img, "unclassified", (int(x1), int(y1)-10),
                        cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0,0,255), 3)
        
        output_path = "/tmp/combined_output.jpg"
        cv2.imwrite(output_path, img)
        return output_path, result_text
    
    except Exception as e:
        return temp_path, f"Error: {str(e)}"
    
    finally:
        if os.path.exists(temp_path):
            os.remove(temp_path)

# ========== Video Detection Functions ==========
def convert_video_to_mp4(input_path, output_path):
    try:
        subprocess.run(['ffmpeg', '-i', input_path, '-vcodec', 'libx264', '-acodec', 'aac', output_path], check=True)
        return output_path
    except subprocess.CalledProcessError as e:
        return None, f"Error converting video: {e}"

def detect_objects_in_video(video_path):
    temp_output_path = "/tmp/output_video.mp4"
    temp_frames_dir = tempfile.mkdtemp()
    frame_count = 0
    previous_detections = {}  # For storing previous frame's detections

    try:
        # Convert video to MP4 if necessary
        if not video_path.endswith(".mp4"):
            video_path, err = convert_video_to_mp4(video_path, temp_output_path)
            if not video_path:
                return None, f"Video conversion error: {err}"

        # Open video for processing
        video = cv2.VideoCapture(video_path)
        frame_rate = int(video.get(cv2.CAP_PROP_FPS))
        frame_width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
        frame_height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
        frame_size = (frame_width, frame_height)

        # Setup VideoWriter for output
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
        output_video = cv2.VideoWriter(temp_output_path, fourcc, frame_rate, frame_size)

        while True:
            ret, frame = video.read()
            if not ret:
                break

            # Save frame for YOLO detection
            frame_path = os.path.join(temp_frames_dir, f"frame_{frame_count}.jpg")
            cv2.imwrite(frame_path, frame)

            # YOLO detection on the frame
            predictions = yolo_model.predict(frame_path, confidence=50, overlap=80).json()

            # Draw YOLO detections on the frame
            current_detections = {}
            for prediction in predictions['predictions']:
                class_name = prediction['class']
                x, y, w, h = prediction['x'], prediction['y'], prediction['width'], prediction['height']
                object_id = f"{class_name}_{x}_{y}_{w}_{h}"
                if object_id not in current_detections:
                    current_detections[object_id] = class_name
                pt1 = (int(x - w/2), int(y - h/2))
                pt2 = (int(x + w/2), int(y + h/2))
                cv2.rectangle(frame, pt1, pt2, (0,255,0), 2)
                cv2.putText(frame, class_name, (pt1[0], pt1[1]-10),
                            cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,255,0), 2)

            # Count objects and overlay text
            object_counts = {}
            for detection_id in current_detections:
                cls = current_detections[detection_id]
                object_counts[cls] = object_counts.get(cls, 0) + 1

            count_text = ""
            total_product_count = 0
            for cls, count in object_counts.items():
                count_text += f"{cls}: {count}\n"
                total_product_count += count
            count_text += f"\nTotal Product: {total_product_count}"
            y_offset = 20
            for line in count_text.split("\n"):
                cv2.putText(frame, line, (10, y_offset), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255,255,255), 2)
                y_offset += 30

            output_video.write(frame)
            frame_count += 1
            previous_detections = current_detections

        video.release()
        output_video.release()

        return temp_output_path

    except Exception as e:
        return None, f"An error occurred: {e}"

# ========== Gradio Interface ==========
with gr.Blocks(theme=gr.themes.Base(primary_hue="teal", secondary_hue="teal", neutral_hue="slate")) as iface:
    gr.Markdown("""<div style="text-align: center;"><h1>NESTLE - STOCK COUNTING</h1></div>""")
    
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(type="pil", label="Input Image")
            detect_image_button = gr.Button("Detect Image")
            output_image = gr.Image(label="Detect Object")
            output_text = gr.Textbox(label="Counting Object")
            detect_image_button.click(fn=detect_combined, inputs=input_image, outputs=[output_image, output_text])
        with gr.Column():
            input_video = gr.Video(label="Input Video")
            detect_video_button = gr.Button("Detect Video")
            output_video = gr.Video(label="Output Video")
            detect_video_button.click(fn=detect_objects_in_video, inputs=input_video, outputs=[output_video])

iface.launch()