File size: 10,230 Bytes
bd977a3 bf1fd9f 0f3d01e bf1fd9f b60852c bf1fd9f b60852c bf1fd9f b60852c bf1fd9f b60852c bf1fd9f b60852c bf1fd9f 56ff081 bf1fd9f b60852c bf1fd9f b60852c bf1fd9f 56ff081 b60852c 56ff081 b60852c 56ff081 bf1fd9f b60852c 56ff081 b60852c bf1fd9f 56ff081 b60852c 56ff081 bf1fd9f 56ff081 b60852c 56ff081 b60852c bf1fd9f b60852c bf1fd9f b60852c 56ff081 bf1fd9f 56ff081 bf1fd9f 56ff081 bf1fd9f b60852c bf1fd9f b60852c bf1fd9f b60852c bf1fd9f b60852c bf1fd9f b60852c bf1fd9f b60852c bf1fd9f b60852c bf1fd9f b60852c bf1fd9f b60852c bf1fd9f b60852c bf1fd9f b60852c bf1fd9f b60852c bf1fd9f b60852c bf1fd9f b60852c bf1fd9f 0f3d01e bf1fd9f b60852c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
import gradio as gr
from dotenv import load_dotenv
from roboflow import Roboflow
import tempfile
import os
import requests
import cv2
import numpy as np
import subprocess
# ========== Load Environment Variables ==========
load_dotenv()
# Roboflow Config
rf_api_key = os.getenv("ROBOFLOW_API_KEY")
workspace = os.getenv("ROBOFLOW_WORKSPACE")
project_name = os.getenv("ROBOFLOW_PROJECT")
model_version = int(os.getenv("ROBOFLOW_MODEL_VERSION"))
# CountGD Config (Replace DINO-X)
# Set your CountGD API key in your .env file (e.g., COUNTGD_API_KEY=YourEncodedAPIKey)
COUNTGD_API_KEY = os.getenv("COUNTGD_API_KEY")
# Inisialisasi YOLO Model from Roboflow
rf = Roboflow(api_key=rf_api_key)
project = rf.workspace(workspace).project(project_name)
yolo_model = project.version(model_version).model
# ========== Function to Check Overlap ==========
def is_overlap(box1, boxes2, threshold=0.3):
"""
Checks if box1 (format: (x_min, y_min, x_max, y_max)) overlaps with any boxes in boxes2.
boxes2 is a list of YOLO bounding boxes in the format (x_center, y_center, width, height).
Returns True if the overlap ratio of box1 is greater than the threshold.
"""
x1_min, y1_min, x1_max, y1_max = box1
for b2 in boxes2:
x_center, y_center, w2, h2 = b2
x2_min = x_center - w2 / 2
x2_max = x_center + w2 / 2
y2_min = y_center - h2 / 2
y2_max = y_center + h2 / 2
# Calculate overlap area
dx = min(x1_max, x2_max) - max(x1_min, x2_min)
dy = min(y1_max, y2_max) - max(y1_min, y2_min)
if dx > 0 and dy > 0:
area_overlap = dx * dy
area_box1 = (x1_max - x1_min) * (y1_max - y1_min)
if area_box1 > 0 and (area_overlap / area_box1) > threshold:
return True
return False
# ========== Combined Object Detection Function ==========
def detect_combined(image):
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
image.save(temp_file, format="JPEG")
temp_path = temp_file.name
try:
# ===== YOLO Detection (Nestlé products) =====
yolo_pred = yolo_model.predict(temp_path, confidence=50, overlap=80).json()
nestle_class_count = {}
nestle_boxes = [] # List to hold YOLO bounding boxes (format: x_center, y_center, width, height)
for pred in yolo_pred['predictions']:
class_name = pred['class']
nestle_class_count[class_name] = nestle_class_count.get(class_name, 0) + 1
nestle_boxes.append((pred['x'], pred['y'], pred['width'], pred['height']))
total_nestle = sum(nestle_class_count.values())
# ===== CountGD Detection (Competitor products) =====
url = "https://api.landing.ai/v1/tools/text-to-object-detection"
files = {"image": open(temp_path, "rb")}
data = {"prompts": ["mixed box"], "model": "countgd"}
headers = {"Authorization": f"Basic {COUNTGD_API_KEY}"}
response = requests.post(url, files=files, data=data, headers=headers)
result = response.json()
competitor_class_count = {}
competitor_boxes = [] # List to hold CountGD bounding boxes (format: x_min, y_min, x_max, y_max)
if 'data' in result:
for obj in result['data'][0]:
if 'bounding_box' in obj:
# CountGD returns bounding_box as [x_min, y_min, x_max, y_max]
x1, y1, x2, y2 = obj['bounding_box']
countgd_box = (x1, y1, x2, y2)
# Only add CountGD detection if it does NOT significantly overlap with any YOLO detection
if not is_overlap(countgd_box, nestle_boxes, threshold=0.3):
class_name = "unclassified" # Generic label for competitor objects
competitor_class_count[class_name] = competitor_class_count.get(class_name, 0) + 1
competitor_boxes.append(countgd_box)
total_competitor = sum(competitor_class_count.values())
# ===== Format Output Text =====
result_text = "Product Nestlé\n\n"
for class_name, count in nestle_class_count.items():
result_text += f"{class_name}: {count}\n"
result_text += f"\nTotal Products Nestlé: {total_nestle}\n\n"
if total_competitor:
result_text += f"Total Unclassified Products: {total_competitor}\n"
else:
result_text += "No Unclassified Products detected\n"
# ===== Visualization =====
img = cv2.imread(temp_path)
# Draw YOLO boxes in green
for pred in yolo_pred['predictions']:
x, y, w, h = pred['x'], pred['y'], pred['width'], pred['height']
pt1 = (int(x - w/2), int(y - h/2))
pt2 = (int(x + w/2), int(y + h/2))
cv2.rectangle(img, pt1, pt2, (0, 255, 0), 2)
cv2.putText(img, pred['class'], (pt1[0], pt1[1]-10),
cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0,255,0), 3)
# Draw CountGD boxes in red
for box in competitor_boxes:
x1, y1, x2, y2 = box
cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), (0, 0, 255), 2)
cv2.putText(img, "unclassified", (int(x1), int(y1)-10),
cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0,0,255), 3)
output_path = "/tmp/combined_output.jpg"
cv2.imwrite(output_path, img)
return output_path, result_text
except Exception as e:
return temp_path, f"Error: {str(e)}"
finally:
if os.path.exists(temp_path):
os.remove(temp_path)
# ========== Video Detection Functions ==========
def convert_video_to_mp4(input_path, output_path):
try:
subprocess.run(['ffmpeg', '-i', input_path, '-vcodec', 'libx264', '-acodec', 'aac', output_path], check=True)
return output_path
except subprocess.CalledProcessError as e:
return None, f"Error converting video: {e}"
def detect_objects_in_video(video_path):
temp_output_path = "/tmp/output_video.mp4"
temp_frames_dir = tempfile.mkdtemp()
frame_count = 0
previous_detections = {} # For storing previous frame's detections
try:
# Convert video to MP4 if necessary
if not video_path.endswith(".mp4"):
video_path, err = convert_video_to_mp4(video_path, temp_output_path)
if not video_path:
return None, f"Video conversion error: {err}"
# Open video for processing
video = cv2.VideoCapture(video_path)
frame_rate = int(video.get(cv2.CAP_PROP_FPS))
frame_width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
frame_size = (frame_width, frame_height)
# Setup VideoWriter for output
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
output_video = cv2.VideoWriter(temp_output_path, fourcc, frame_rate, frame_size)
while True:
ret, frame = video.read()
if not ret:
break
# Save frame for YOLO detection
frame_path = os.path.join(temp_frames_dir, f"frame_{frame_count}.jpg")
cv2.imwrite(frame_path, frame)
# YOLO detection on the frame
predictions = yolo_model.predict(frame_path, confidence=50, overlap=80).json()
# Draw YOLO detections on the frame
current_detections = {}
for prediction in predictions['predictions']:
class_name = prediction['class']
x, y, w, h = prediction['x'], prediction['y'], prediction['width'], prediction['height']
object_id = f"{class_name}_{x}_{y}_{w}_{h}"
if object_id not in current_detections:
current_detections[object_id] = class_name
pt1 = (int(x - w/2), int(y - h/2))
pt2 = (int(x + w/2), int(y + h/2))
cv2.rectangle(frame, pt1, pt2, (0,255,0), 2)
cv2.putText(frame, class_name, (pt1[0], pt1[1]-10),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,255,0), 2)
# Count objects and overlay text
object_counts = {}
for detection_id in current_detections:
cls = current_detections[detection_id]
object_counts[cls] = object_counts.get(cls, 0) + 1
count_text = ""
total_product_count = 0
for cls, count in object_counts.items():
count_text += f"{cls}: {count}\n"
total_product_count += count
count_text += f"\nTotal Product: {total_product_count}"
y_offset = 20
for line in count_text.split("\n"):
cv2.putText(frame, line, (10, y_offset), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255,255,255), 2)
y_offset += 30
output_video.write(frame)
frame_count += 1
previous_detections = current_detections
video.release()
output_video.release()
return temp_output_path
except Exception as e:
return None, f"An error occurred: {e}"
# ========== Gradio Interface ==========
with gr.Blocks(theme=gr.themes.Base(primary_hue="teal", secondary_hue="teal", neutral_hue="slate")) as iface:
gr.Markdown("""<div style="text-align: center;"><h1>NESTLE - STOCK COUNTING</h1></div>""")
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil", label="Input Image")
detect_image_button = gr.Button("Detect Image")
output_image = gr.Image(label="Detect Object")
output_text = gr.Textbox(label="Counting Object")
detect_image_button.click(fn=detect_combined, inputs=input_image, outputs=[output_image, output_text])
with gr.Column():
input_video = gr.Video(label="Input Video")
detect_video_button = gr.Button("Detect Video")
output_video = gr.Video(label="Output Video")
detect_video_button.click(fn=detect_objects_in_video, inputs=input_video, outputs=[output_video])
iface.launch()
|