muhammadsalmanalfaridzi's picture
Update app.py
6f2c705 verified
raw
history blame
6.11 kB
import gradio as gr
from dotenv import load_dotenv
from roboflow import Roboflow
import tempfile
import os
import requests
import cv2
import numpy as np
import subprocess
# ========== Load Environment Variables ==========
load_dotenv()
# Roboflow Config
rf_api_key = os.getenv("ROBOFLOW_API_KEY")
workspace = os.getenv("ROBOFLOW_WORKSPACE")
project_name = os.getenv("ROBOFLOW_PROJECT")
model_version = int(os.getenv("ROBOFLOW_MODEL_VERSION"))
# CountGD Config
COUNTGD_API_KEY = os.getenv("COUNTGD_API_KEY")
# Inisialisasi YOLO Model dari Roboflow
rf = Roboflow(api_key=rf_api_key)
project = rf.workspace(workspace).project(project_name)
yolo_model = project.version(model_version).model
# ========== Fungsi untuk Menghitung IoU ==========
def iou(boxA, boxB):
xA = max(boxA[0], boxB[0])
yA = max(boxA[1], boxB[1])
xB = min(boxA[2], boxB[2])
yB = min(boxA[3], boxB[3])
interArea = max(0, xB - xA) * max(0, yB - yA)
boxAArea = (boxA[2] - boxA[0]) * (boxA[3] - boxA[1])
boxBArea = (boxB[2] - boxB[0]) * (boxB[3] - boxB[1])
return interArea / float(boxAArea + boxBArea - interArea) if (boxAArea + boxBArea - interArea) > 0 else 0
# ========== Fungsi Deteksi Kombinasi ==========
def detect_combined(image):
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
image.save(temp_file, format="JPEG")
temp_path = temp_file.name
try:
# YOLO Detection (Produk Nestlé)
yolo_pred = yolo_model.predict(temp_path, confidence=50, overlap=80).json()
nestle_class_count = {}
nestle_boxes = [] # (x_center, y_center, width, height)
for pred in yolo_pred['predictions']:
class_name = pred['class']
nestle_class_count[class_name] = nestle_class_count.get(class_name, 0) + 1
nestle_boxes.append((pred['x'], pred['y'], pred['width'], pred['height']))
total_nestle = sum(nestle_class_count.values())
# CountGD Detection (Produk Kompetitor)
url = "https://api.landing.ai/v1/tools/text-to-object-detection"
competitor_class_count = {}
competitor_boxes = []
COUNTGD_PROMPTS = ["cans", "bottle", "mixed box"]
headers = {"Authorization": f"Basic {COUNTGD_API_KEY}"}
for prompt in COUNTGD_PROMPTS:
with open(temp_path, "rb") as f:
files = {"image": f}
data = {"prompts": [prompt], "model": "countgd"}
response = requests.post(url, files=files, data=data, headers=headers)
result = response.json()
if 'data' in result and result['data']:
detections = result['data'][0]
detections_sorted = sorted(detections, key=lambda obj: obj.get('confidence', 0), reverse=True)
for obj in detections_sorted:
if 'bounding_box' in obj:
x1, y1, x2, y2 = obj['bounding_box']
countgd_box = (x1, y1, x2, y2)
# Hapus duplikasi dengan deteksi YOLO
if any(iou(countgd_box, yolo_box) > 0.3 for yolo_box in nestle_boxes):
continue
# Hapus duplikasi antar deteksi CountGD
if any(iou(countgd_box, existing_box) > 0.3 for existing_box in competitor_boxes):
continue
label = obj.get('label', prompt)
# Hapus "mixed box" jika ada "cans" atau "bottle" yang lebih spesifik
if label == "mixed box" and ("cans" in competitor_class_count or "bottle" in competitor_class_count):
continue
competitor_class_count[label] = competitor_class_count.get(label, 0) + 1
competitor_boxes.append(countgd_box)
total_competitor = sum(competitor_class_count.values())
# Format Output Text
result_text = "Product Nestlé\n\n"
for class_name, count in nestle_class_count.items():
result_text += f"{class_name}: {count}\n"
result_text += f"\nTotal Products Nestlé: {total_nestle}\n\n"
if total_competitor:
result_text += f"\nTotal Unclassified Products: {total_competitor}\n"
else:
result_text += "No Unclassified Products detected\n"
# Visualisasi Bounding Box
img = cv2.imread(temp_path)
for pred in yolo_pred['predictions']:
x, y, w, h = pred['x'], pred['y'], pred['width'], pred['height']
pt1 = (int(x - w/2), int(y - h/2))
pt2 = (int(x + w/2), int(y + h/2))
cv2.rectangle(img, pt1, pt2, (0, 255, 0), 2)
cv2.putText(img, pred['class'], (pt1[0], pt1[1]-10), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0,255,0), 3)
for box in competitor_boxes:
x1, y1, x2, y2 = box
cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), (0, 0, 255), 2)
cv2.putText(img, "unclassified", (int(x1), int(y1)-10), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0,0,255), 3)
output_path = "/tmp/combined_output.jpg"
cv2.imwrite(output_path, img)
return output_path, result_text
except Exception as e:
return temp_path, f"Error: {str(e)}"
finally:
if os.path.exists(temp_path):
os.remove(temp_path)
# ========== Gradio Interface ==========
with gr.Blocks(theme=gr.themes.Base(primary_hue="teal", secondary_hue="teal", neutral_hue="slate")) as iface:
gr.Markdown("""<div style="text-align: center;"><h1>NESTLE - STOCK COUNTING</h1></div>""")
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil", label="Input Image")
detect_image_button = gr.Button("Detect Image")
output_image = gr.Image(label="Detect Object")
output_text = gr.Textbox(label="Counting Object")
detect_image_button.click(fn=detect_combined, inputs=input_image, outputs=[output_image, output_text])
iface.launch()