Update app.py
Browse files
app.py
CHANGED
@@ -28,7 +28,9 @@ yolo_model = project.version(model_version).model
|
|
28 |
# ========== Fungsi untuk Mengecek Overlap antara YOLO dan CountGD ==========
|
29 |
def is_overlap(box1, boxes2, threshold=0.5):
|
30 |
"""
|
31 |
-
Mengecek apakah box1
|
|
|
|
|
32 |
"""
|
33 |
x1_min, y1_min, x1_max, y1_max = box1
|
34 |
for b2 in boxes2:
|
@@ -51,6 +53,7 @@ def is_overlap(box1, boxes2, threshold=0.5):
|
|
51 |
def iou(boxA, boxB):
|
52 |
"""
|
53 |
Menghitung Intersection over Union (IoU) antara dua bounding box.
|
|
|
54 |
"""
|
55 |
xA = max(boxA[0], boxB[0])
|
56 |
yA = max(boxA[1], boxB[1])
|
@@ -59,11 +62,11 @@ def iou(boxA, boxB):
|
|
59 |
interArea = max(0, xB - xA) * max(0, yB - yA)
|
60 |
boxAArea = (boxA[2] - boxA[0]) * (boxA[3] - boxA[1])
|
61 |
boxBArea = (boxB[2] - boxB[0]) * (boxB[3] - boxB[1])
|
62 |
-
|
63 |
-
return iou_val
|
64 |
|
65 |
# ========== Fungsi Deteksi Kombinasi ==========
|
66 |
def detect_combined(image):
|
|
|
67 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
|
68 |
image.save(temp_file, format="JPEG")
|
69 |
temp_path = temp_file.name
|
@@ -71,6 +74,7 @@ def detect_combined(image):
|
|
71 |
try:
|
72 |
# ===== YOLO Detection =====
|
73 |
yolo_pred = yolo_model.predict(temp_path, confidence=50, overlap=80).json()
|
|
|
74 |
nestle_boxes = [(pred['x'], pred['y'], pred['width'], pred['height']) for pred in yolo_pred['predictions']]
|
75 |
|
76 |
# ===== CountGD Detection =====
|
@@ -92,18 +96,21 @@ def detect_combined(image):
|
|
92 |
if 'bounding_box' in obj:
|
93 |
x1, y1, x2, y2 = obj['bounding_box']
|
94 |
countgd_box = (x1, y1, x2, y2)
|
95 |
-
|
96 |
-
if
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
|
|
|
|
104 |
|
105 |
# ===== Visualisasi =====
|
106 |
img = cv2.imread(temp_path)
|
|
|
107 |
for pred in yolo_pred['predictions']:
|
108 |
x, y, w, h = pred['x'], pred['y'], pred['width'], pred['height']
|
109 |
pt1 = (int(x - w/2), int(y - h/2))
|
@@ -111,7 +118,7 @@ def detect_combined(image):
|
|
111 |
cv2.rectangle(img, pt1, pt2, (0, 255, 0), 2)
|
112 |
cv2.putText(img, pred['class'], (pt1[0], pt1[1]-10),
|
113 |
cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0,255,0), 3)
|
114 |
-
|
115 |
for box in competitor_boxes:
|
116 |
x1, y1, x2, y2 = box
|
117 |
cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), (0, 0, 255), 2)
|
@@ -120,7 +127,10 @@ def detect_combined(image):
|
|
120 |
|
121 |
output_path = "/tmp/combined_output.jpg"
|
122 |
cv2.imwrite(output_path, img)
|
123 |
-
|
|
|
|
|
|
|
124 |
|
125 |
except Exception as e:
|
126 |
return temp_path, f"Error: {str(e)}"
|
@@ -136,9 +146,16 @@ with gr.Blocks(theme=gr.themes.Base(primary_hue="teal", secondary_hue="teal", ne
|
|
136 |
with gr.Row():
|
137 |
with gr.Column():
|
138 |
input_image = gr.Image(type="pil", label="Input Image")
|
|
|
|
|
139 |
detect_image_button = gr.Button("Detect Image")
|
|
|
|
|
140 |
output_image = gr.Image(label="Detect Object")
|
|
|
|
|
141 |
output_text = gr.Textbox(label="Counting Object")
|
142 |
-
|
|
|
143 |
|
144 |
iface.launch()
|
|
|
28 |
# ========== Fungsi untuk Mengecek Overlap antara YOLO dan CountGD ==========
|
29 |
def is_overlap(box1, boxes2, threshold=0.5):
|
30 |
"""
|
31 |
+
Mengecek apakah box1 (format: (x_min, y_min, x_max, y_max)) overlap
|
32 |
+
dengan salah satu box di boxes2 (format: (x_center, y_center, width, height))
|
33 |
+
berdasarkan IoU, menggunakan threshold yang ditetapkan.
|
34 |
"""
|
35 |
x1_min, y1_min, x1_max, y1_max = box1
|
36 |
for b2 in boxes2:
|
|
|
53 |
def iou(boxA, boxB):
|
54 |
"""
|
55 |
Menghitung Intersection over Union (IoU) antara dua bounding box.
|
56 |
+
Masing-masing box dalam format (x_min, y_min, x_max, y_max).
|
57 |
"""
|
58 |
xA = max(boxA[0], boxB[0])
|
59 |
yA = max(boxA[1], boxB[1])
|
|
|
62 |
interArea = max(0, xB - xA) * max(0, yB - yA)
|
63 |
boxAArea = (boxA[2] - boxA[0]) * (boxA[3] - boxA[1])
|
64 |
boxBArea = (boxB[2] - boxB[0]) * (boxB[3] - boxB[1])
|
65 |
+
return interArea / float(boxAArea + boxBArea - interArea) if (boxAArea + boxBArea - interArea) > 0 else 0
|
|
|
66 |
|
67 |
# ========== Fungsi Deteksi Kombinasi ==========
|
68 |
def detect_combined(image):
|
69 |
+
# Simpan image ke file sementara
|
70 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
|
71 |
image.save(temp_file, format="JPEG")
|
72 |
temp_path = temp_file.name
|
|
|
74 |
try:
|
75 |
# ===== YOLO Detection =====
|
76 |
yolo_pred = yolo_model.predict(temp_path, confidence=50, overlap=80).json()
|
77 |
+
# Get YOLO boxes as (x_center, y_center, width, height)
|
78 |
nestle_boxes = [(pred['x'], pred['y'], pred['width'], pred['height']) for pred in yolo_pred['predictions']]
|
79 |
|
80 |
# ===== CountGD Detection =====
|
|
|
96 |
if 'bounding_box' in obj:
|
97 |
x1, y1, x2, y2 = obj['bounding_box']
|
98 |
countgd_box = (x1, y1, x2, y2)
|
99 |
+
# Prioritaskan deteksi YOLO: hapus jika overlap dengan YOLO (threshold 0.5)
|
100 |
+
if is_overlap(countgd_box, nestle_boxes, threshold=0.5):
|
101 |
+
continue
|
102 |
+
# Hindari duplikasi antar CountGD: jika IoU dengan deteksi lain > 0.4, lewati
|
103 |
+
duplicate = False
|
104 |
+
for existing_box in competitor_boxes:
|
105 |
+
if iou(countgd_box, existing_box) > 0.4:
|
106 |
+
duplicate = True
|
107 |
+
break
|
108 |
+
if not duplicate:
|
109 |
+
competitor_boxes.append(countgd_box)
|
110 |
|
111 |
# ===== Visualisasi =====
|
112 |
img = cv2.imread(temp_path)
|
113 |
+
# Gambar bounding box YOLO (hijau)
|
114 |
for pred in yolo_pred['predictions']:
|
115 |
x, y, w, h = pred['x'], pred['y'], pred['width'], pred['height']
|
116 |
pt1 = (int(x - w/2), int(y - h/2))
|
|
|
118 |
cv2.rectangle(img, pt1, pt2, (0, 255, 0), 2)
|
119 |
cv2.putText(img, pred['class'], (pt1[0], pt1[1]-10),
|
120 |
cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0,255,0), 3)
|
121 |
+
# Gambar bounding box CountGD (merah)
|
122 |
for box in competitor_boxes:
|
123 |
x1, y1, x2, y2 = box
|
124 |
cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), (0, 0, 255), 2)
|
|
|
127 |
|
128 |
output_path = "/tmp/combined_output.jpg"
|
129 |
cv2.imwrite(output_path, img)
|
130 |
+
|
131 |
+
# Buat result text untuk counting object
|
132 |
+
result_text = f"Total Produk Nestlé: {len(nestle_boxes)}\nTotal Unclassified Products: {len(competitor_boxes)}"
|
133 |
+
return output_path, result_text
|
134 |
|
135 |
except Exception as e:
|
136 |
return temp_path, f"Error: {str(e)}"
|
|
|
146 |
with gr.Row():
|
147 |
with gr.Column():
|
148 |
input_image = gr.Image(type="pil", label="Input Image")
|
149 |
+
with gr.Row():
|
150 |
+
with gr.Column():
|
151 |
detect_image_button = gr.Button("Detect Image")
|
152 |
+
with gr.Row():
|
153 |
+
with gr.Column():
|
154 |
output_image = gr.Image(label="Detect Object")
|
155 |
+
with gr.Row():
|
156 |
+
with gr.Column():
|
157 |
output_text = gr.Textbox(label="Counting Object")
|
158 |
+
|
159 |
+
detect_image_button.click(fn=detect_combined, inputs=input_image, outputs=[output_image, output_text])
|
160 |
|
161 |
iface.launch()
|