muhammadsalmanalfaridzi commited on
Commit
540d913
·
verified ·
1 Parent(s): 6f2c705

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +56 -61
app.py CHANGED
@@ -17,7 +17,7 @@ workspace = os.getenv("ROBOFLOW_WORKSPACE")
17
  project_name = os.getenv("ROBOFLOW_PROJECT")
18
  model_version = int(os.getenv("ROBOFLOW_MODEL_VERSION"))
19
 
20
- # CountGD Config
21
  COUNTGD_API_KEY = os.getenv("COUNTGD_API_KEY")
22
 
23
  # Inisialisasi YOLO Model dari Roboflow
@@ -25,111 +25,106 @@ rf = Roboflow(api_key=rf_api_key)
25
  project = rf.workspace(workspace).project(project_name)
26
  yolo_model = project.version(model_version).model
27
 
28
- # ========== Fungsi untuk Menghitung IoU ==========
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
  def iou(boxA, boxB):
 
 
 
30
  xA = max(boxA[0], boxB[0])
31
  yA = max(boxA[1], boxB[1])
32
  xB = min(boxA[2], boxB[2])
33
  yB = min(boxA[3], boxB[3])
34
-
35
  interArea = max(0, xB - xA) * max(0, yB - yA)
36
  boxAArea = (boxA[2] - boxA[0]) * (boxA[3] - boxA[1])
37
  boxBArea = (boxB[2] - boxB[0]) * (boxB[3] - boxB[1])
38
-
39
- return interArea / float(boxAArea + boxBArea - interArea) if (boxAArea + boxBArea - interArea) > 0 else 0
40
 
41
  # ========== Fungsi Deteksi Kombinasi ==========
42
  def detect_combined(image):
43
  with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
44
  image.save(temp_file, format="JPEG")
45
  temp_path = temp_file.name
46
-
47
  try:
48
- # YOLO Detection (Produk Nestlé)
49
  yolo_pred = yolo_model.predict(temp_path, confidence=50, overlap=80).json()
50
- nestle_class_count = {}
51
- nestle_boxes = [] # (x_center, y_center, width, height)
52
- for pred in yolo_pred['predictions']:
53
- class_name = pred['class']
54
- nestle_class_count[class_name] = nestle_class_count.get(class_name, 0) + 1
55
- nestle_boxes.append((pred['x'], pred['y'], pred['width'], pred['height']))
56
-
57
- total_nestle = sum(nestle_class_count.values())
58
-
59
- # CountGD Detection (Produk Kompetitor)
60
  url = "https://api.landing.ai/v1/tools/text-to-object-detection"
61
- competitor_class_count = {}
62
  competitor_boxes = []
63
  COUNTGD_PROMPTS = ["cans", "bottle", "mixed box"]
64
- headers = {"Authorization": f"Basic {COUNTGD_API_KEY}"}
65
-
66
  for prompt in COUNTGD_PROMPTS:
67
  with open(temp_path, "rb") as f:
68
  files = {"image": f}
69
  data = {"prompts": [prompt], "model": "countgd"}
70
  response = requests.post(url, files=files, data=data, headers=headers)
71
  result = response.json()
72
-
73
  if 'data' in result and result['data']:
74
  detections = result['data'][0]
75
- detections_sorted = sorted(detections, key=lambda obj: obj.get('confidence', 0), reverse=True)
76
-
77
- for obj in detections_sorted:
78
  if 'bounding_box' in obj:
79
  x1, y1, x2, y2 = obj['bounding_box']
80
  countgd_box = (x1, y1, x2, y2)
81
-
82
- # Hapus duplikasi dengan deteksi YOLO
83
- if any(iou(countgd_box, yolo_box) > 0.3 for yolo_box in nestle_boxes):
84
- continue
85
-
86
- # Hapus duplikasi antar deteksi CountGD
87
- if any(iou(countgd_box, existing_box) > 0.3 for existing_box in competitor_boxes):
88
- continue
89
-
90
- label = obj.get('label', prompt)
91
 
92
- # Hapus "mixed box" jika ada "cans" atau "bottle" yang lebih spesifik
93
- if label == "mixed box" and ("cans" in competitor_class_count or "bottle" in competitor_class_count):
94
- continue
95
-
96
- competitor_class_count[label] = competitor_class_count.get(label, 0) + 1
97
- competitor_boxes.append(countgd_box)
98
-
99
- total_competitor = sum(competitor_class_count.values())
100
-
101
- # Format Output Text
102
- result_text = "Product Nestlé\n\n"
103
- for class_name, count in nestle_class_count.items():
104
- result_text += f"{class_name}: {count}\n"
105
- result_text += f"\nTotal Products Nestlé: {total_nestle}\n\n"
106
 
107
- if total_competitor:
108
- result_text += f"\nTotal Unclassified Products: {total_competitor}\n"
109
- else:
110
- result_text += "No Unclassified Products detected\n"
111
-
112
- # Visualisasi Bounding Box
113
  img = cv2.imread(temp_path)
114
  for pred in yolo_pred['predictions']:
115
  x, y, w, h = pred['x'], pred['y'], pred['width'], pred['height']
116
  pt1 = (int(x - w/2), int(y - h/2))
117
  pt2 = (int(x + w/2), int(y + h/2))
118
  cv2.rectangle(img, pt1, pt2, (0, 255, 0), 2)
119
- cv2.putText(img, pred['class'], (pt1[0], pt1[1]-10), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0,255,0), 3)
120
-
 
121
  for box in competitor_boxes:
122
  x1, y1, x2, y2 = box
123
  cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), (0, 0, 255), 2)
124
- cv2.putText(img, "unclassified", (int(x1), int(y1)-10), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0,0,255), 3)
125
-
 
126
  output_path = "/tmp/combined_output.jpg"
127
  cv2.imwrite(output_path, img)
128
- return output_path, result_text
129
-
130
  except Exception as e:
131
  return temp_path, f"Error: {str(e)}"
132
-
133
  finally:
134
  if os.path.exists(temp_path):
135
  os.remove(temp_path)
 
17
  project_name = os.getenv("ROBOFLOW_PROJECT")
18
  model_version = int(os.getenv("ROBOFLOW_MODEL_VERSION"))
19
 
20
+ # CountGD Config (Replace DINO-X)
21
  COUNTGD_API_KEY = os.getenv("COUNTGD_API_KEY")
22
 
23
  # Inisialisasi YOLO Model dari Roboflow
 
25
  project = rf.workspace(workspace).project(project_name)
26
  yolo_model = project.version(model_version).model
27
 
28
+ # ========== Fungsi untuk Mengecek Overlap antara YOLO dan CountGD ==========
29
+ def is_overlap(box1, boxes2, threshold=0.5):
30
+ """
31
+ Mengecek apakah box1 overlap dengan salah satu box di boxes2 berdasarkan IoU.
32
+ """
33
+ x1_min, y1_min, x1_max, y1_max = box1
34
+ for b2 in boxes2:
35
+ x_center, y_center, w2, h2 = b2
36
+ x2_min = x_center - w2 / 2
37
+ x2_max = x_center + w2 / 2
38
+ y2_min = y_center - h2 / 2
39
+ y2_max = y_center + h2 / 2
40
+
41
+ dx = min(x1_max, x2_max) - max(x1_min, x2_min)
42
+ dy = min(y1_max, y2_max) - max(y1_min, y2_min)
43
+ if dx > 0 and dy > 0:
44
+ area_overlap = dx * dy
45
+ area_box1 = (x1_max - x1_min) * (y1_max - y1_min)
46
+ if area_box1 > 0 and (area_overlap / area_box1) > threshold:
47
+ return True
48
+ return False
49
+
50
+ # ========== Fungsi untuk Menghitung IoU antar dua bounding box ==========
51
  def iou(boxA, boxB):
52
+ """
53
+ Menghitung Intersection over Union (IoU) antara dua bounding box.
54
+ """
55
  xA = max(boxA[0], boxB[0])
56
  yA = max(boxA[1], boxB[1])
57
  xB = min(boxA[2], boxB[2])
58
  yB = min(boxA[3], boxB[3])
 
59
  interArea = max(0, xB - xA) * max(0, yB - yA)
60
  boxAArea = (boxA[2] - boxA[0]) * (boxA[3] - boxA[1])
61
  boxBArea = (boxB[2] - boxB[0]) * (boxB[3] - boxB[1])
62
+ iou_val = interArea / float(boxAArea + boxBArea - interArea) if (boxAArea + boxBArea - interArea) > 0 else 0
63
+ return iou_val
64
 
65
  # ========== Fungsi Deteksi Kombinasi ==========
66
  def detect_combined(image):
67
  with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
68
  image.save(temp_file, format="JPEG")
69
  temp_path = temp_file.name
70
+
71
  try:
72
+ # ===== YOLO Detection =====
73
  yolo_pred = yolo_model.predict(temp_path, confidence=50, overlap=80).json()
74
+ nestle_boxes = [(pred['x'], pred['y'], pred['width'], pred['height']) for pred in yolo_pred['predictions']]
75
+
76
+ # ===== CountGD Detection =====
 
 
 
 
 
 
 
77
  url = "https://api.landing.ai/v1/tools/text-to-object-detection"
78
+ headers = {"Authorization": f"Basic {COUNTGD_API_KEY}"}
79
  competitor_boxes = []
80
  COUNTGD_PROMPTS = ["cans", "bottle", "mixed box"]
81
+
 
82
  for prompt in COUNTGD_PROMPTS:
83
  with open(temp_path, "rb") as f:
84
  files = {"image": f}
85
  data = {"prompts": [prompt], "model": "countgd"}
86
  response = requests.post(url, files=files, data=data, headers=headers)
87
  result = response.json()
88
+
89
  if 'data' in result and result['data']:
90
  detections = result['data'][0]
91
+ for obj in detections:
 
 
92
  if 'bounding_box' in obj:
93
  x1, y1, x2, y2 = obj['bounding_box']
94
  countgd_box = (x1, y1, x2, y2)
 
 
 
 
 
 
 
 
 
 
95
 
96
+ if not is_overlap(countgd_box, nestle_boxes, threshold=0.5):
97
+ duplicate = False
98
+ for existing_box in competitor_boxes:
99
+ if iou(countgd_box, existing_box) > 0.4:
100
+ duplicate = True
101
+ break
102
+ if not duplicate:
103
+ competitor_boxes.append(countgd_box)
 
 
 
 
 
 
104
 
105
+ # ===== Visualisasi =====
 
 
 
 
 
106
  img = cv2.imread(temp_path)
107
  for pred in yolo_pred['predictions']:
108
  x, y, w, h = pred['x'], pred['y'], pred['width'], pred['height']
109
  pt1 = (int(x - w/2), int(y - h/2))
110
  pt2 = (int(x + w/2), int(y + h/2))
111
  cv2.rectangle(img, pt1, pt2, (0, 255, 0), 2)
112
+ cv2.putText(img, pred['class'], (pt1[0], pt1[1]-10),
113
+ cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0,255,0), 3)
114
+
115
  for box in competitor_boxes:
116
  x1, y1, x2, y2 = box
117
  cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), (0, 0, 255), 2)
118
+ cv2.putText(img, "unclassified", (int(x1), int(y1)-10),
119
+ cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0,0,255), 3)
120
+
121
  output_path = "/tmp/combined_output.jpg"
122
  cv2.imwrite(output_path, img)
123
+ return output_path
124
+
125
  except Exception as e:
126
  return temp_path, f"Error: {str(e)}"
127
+
128
  finally:
129
  if os.path.exists(temp_path):
130
  os.remove(temp_path)