Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os | |
from pathlib import Path | |
import sys | |
import torch | |
from PIL import Image, ImageOps | |
import numpy as np | |
from utils_ootd import get_mask_location | |
PROJECT_ROOT = Path(__file__).absolute().parents[1].absolute() | |
sys.path.insert(0, str(PROJECT_ROOT)) | |
from preprocess.openpose.run_openpose import OpenPose | |
from preprocess.humanparsing.run_parsing import Parsing | |
from ootd.inference_ootd_hd import OOTDiffusionHD | |
from ootd.inference_ootd_dc import OOTDiffusionDC | |
from preprocess.openpose.annotator.openpose.util import draw_bodypose | |
# Set default dtype to float64 | |
# torch.set_default_dtype(torch.float16) | |
openpose_model_hd = OpenPose(0) | |
parsing_model_hd = Parsing(0) | |
ootd_model_hd = OOTDiffusionHD(0) | |
openpose_model_dc = OpenPose(0) | |
parsing_model_dc = Parsing(0) | |
ootd_model_dc = OOTDiffusionDC(0) | |
category_dict = ['upperbody', 'lowerbody', 'dress'] | |
category_dict_utils = ['upper_body', 'lower_body', 'dresses'] | |
example_path = os.path.join(os.path.dirname(__file__), 'examples') | |
model_hd = os.path.join(example_path, 'model/model_1.png') | |
garment_hd = os.path.join(example_path, 'garment/03244_00.jpg') | |
model_dc = os.path.join(example_path, 'model/model_8.png') | |
garment_dc = os.path.join(example_path, 'garment/048554_1.jpg') | |
openpose_model_dc.preprocessor.body_estimation.model.to('cuda') | |
ootd_model_dc.pipe.to('cuda') | |
ootd_model_dc.image_encoder.to('cuda') | |
ootd_model_dc.text_encoder.to('cuda') | |
def convert_to_image(image_array): | |
if isinstance(image_array, np.ndarray): | |
# Normalize the data to the range [0, 255] | |
image_array = 255 * (image_array - np.min(image_array)) / (np.max(image_array) - np.min(image_array)) | |
# Convert to uint8 | |
image_array = image_array.astype(np.uint8) | |
return Image.fromarray(image_array) | |
else: | |
# Convert to NumPy array first if necessary | |
image_array = np.array(image_array) | |
# Normalize and convert to uint8 | |
image_array = 255 * (image_array - np.min(image_array)) / (np.max(image_array) - np.min(image_array)) | |
image_array = image_array.astype(np.uint8) | |
return Image.fromarray(image_array) | |
# import spaces | |
# @spaces.GPU | |
def process_hd(vton_img, garm_img, n_samples, n_steps, image_scale, seed): | |
model_type = 'hd' | |
category = 0 # 0:upperbody; 1:lowerbody; 2:dress | |
with torch.no_grad(): | |
openpose_model_hd.preprocessor.body_estimation.model.to('cuda') | |
ootd_model_hd.pipe.to('cuda') | |
ootd_model_hd.image_encoder.to('cuda') | |
ootd_model_hd.text_encoder.to('cuda') | |
garm_img = Image.open(garm_img).resize((768, 1024)) | |
vton_img = Image.open(vton_img).resize((768, 1024)) | |
keypoints = openpose_model_hd(vton_img.resize((384, 512))) | |
model_parse, _ = parsing_model_hd(vton_img.resize((384, 512))) | |
mask, mask_gray = get_mask_location(model_type, category_dict_utils[category], model_parse, keypoints) | |
mask = mask.resize((768, 1024), Image.NEAREST) | |
mask_gray = mask_gray.resize((768, 1024), Image.NEAREST) | |
masked_vton_img = Image.composite(mask_gray, vton_img, mask) | |
images = ootd_model_hd( | |
model_type=model_type, | |
category=category_dict[category], | |
image_garm=garm_img, | |
image_vton=masked_vton_img, | |
mask=mask, | |
image_ori=vton_img, | |
num_samples=n_samples, | |
num_steps=n_steps, | |
image_scale=image_scale, | |
seed=seed, | |
) | |
return images | |
# @spaces.GPU | |
def process_dc(vton_img, garm_img, category): | |
model_type = 'dc' | |
if category == 'Upper-body': | |
category = 0 | |
elif category == 'Lower-body': | |
category = 1 | |
else: | |
category =2 | |
with torch.no_grad(): | |
# openpose_model_dc.preprocessor.body_estimation.model.to('cuda') | |
# ootd_model_dc.pipe.to('cuda') | |
# ootd_model_dc.image_encoder.to('cuda') | |
# ootd_model_dc.text_encoder.to('cuda') | |
garm_img = Image.open(garm_img).resize((768, 1024)) | |
vton_img = Image.open(vton_img).resize((768, 1024)) | |
keypoints ,candidate , subset = openpose_model_dc(vton_img.resize((384, 512))) | |
# print(len(keypoints["pose_keypoints_2d"])) | |
# print(keypoints["pose_keypoints_2d"]) | |
# person_image = np.asarray(vton_img) | |
# print(len(person_image)) | |
# person_image = np.asarray(Image.open(vton_img).resize((768, 1024))) | |
# output = draw_bodypose(canvas=person_image,candidate=candidate, subset=subset ) | |
# output_image = Image.fromarray(output) | |
# output_image.save('keypose.png') | |
left_point = keypoints["pose_keypoints_2d"][2] | |
right_point = keypoints["pose_keypoints_2d"][5] | |
neck_point = keypoints["pose_keypoints_2d"][1] | |
hip_point = keypoints["pose_keypoints_2d"][8] | |
print(f'left shoulder - {left_point}') | |
print(f'right shoulder - {right_point}') | |
# #find disctance using Euclidian distance | |
shoulder_width_pixels = round(np.sqrt( np.power((right_point[0]-left_point[0]),2) + np.power((right_point[1]-left_point[1]),2)),2) | |
height_pixels = round(np.sqrt( np.power((neck_point[0]-hip_point[0]),2) + np.power((neck_point[1]-hip_point[1]),2)),2) *2 | |
# # Assuming an average human height | |
average_height_cm = 172.72 *1.5 | |
# Conversion factor from pixels to cm | |
conversion_factor = average_height_cm / height_pixels | |
# Convert shoulder width to real-world units | |
shoulder_width_cm = shoulder_width_pixels * conversion_factor | |
print(f'Shoulder width (in pixels): {shoulder_width_pixels}') | |
print(f'Estimated height (in pixels): {height_pixels}') | |
print(f'Conversion factor (pixels to cm): {conversion_factor}') | |
print(f'Shoulder width (in cm): {shoulder_width_cm}') | |
print(f'Shoulder width (in INCH): {round(shoulder_width_cm/2.54,1)}') | |
model_parse, face_mask = parsing_model_dc(vton_img.resize((384, 512))) | |
model_parse_image = convert_to_image(model_parse) | |
face_mask_image = convert_to_image(face_mask) | |
# Save the images | |
model_parse_image.save('model_parse_image.png') | |
face_mask_image.save('face_mask_image.png') | |
mask, mask_gray = get_mask_location(model_type, category_dict_utils[category], model_parse, keypoints) | |
mask = mask.resize((768, 1024), Image.NEAREST) | |
mask_gray = mask_gray.resize((768, 1024), Image.NEAREST) | |
masked_vton_img = Image.composite(mask_gray, vton_img, mask) | |
images = ootd_model_dc( | |
model_type=model_type, | |
category=category_dict[category], | |
image_garm=garm_img, | |
image_vton=masked_vton_img, | |
mask=mask, | |
image_ori=vton_img, | |
num_samples=1, | |
num_steps=10, | |
image_scale= 2.0, | |
seed=-1, | |
) | |
return images | |
block = gr.Blocks().queue() | |
with block: | |
with gr.Row(): | |
gr.Markdown("# ") | |
# with gr.Row(): | |
# gr.Markdown("## Half-body-1") | |
# with gr.Row(): | |
# gr.Markdown("***Support upper-body garments***") | |
# with gr.Row(): | |
# with gr.Column(): | |
# vton_img = gr.Image(label="Model", sources='upload', type="filepath", height=384, value=model_hd) | |
# example = gr.Examples( | |
# inputs=vton_img, | |
# examples_per_page=14, | |
# examples=[ | |
# os.path.join(example_path, 'model/model_1.png'), | |
# os.path.join(example_path, 'model/model_2.png'), | |
# os.path.join(example_path, 'model/model_3.png'), | |
# os.path.join(example_path, 'model/model_4.png'), | |
# os.path.join(example_path, 'model/model_5.png'), | |
# os.path.join(example_path, 'model/model_6.png'), | |
# os.path.join(example_path, 'model/model_7.png'), | |
# os.path.join(example_path, 'model/01008_00.jpg'), | |
# os.path.join(example_path, 'model/07966_00.jpg'), | |
# os.path.join(example_path, 'model/05997_00.jpg'), | |
# os.path.join(example_path, 'model/02849_00.jpg'), | |
# os.path.join(example_path, 'model/14627_00.jpg'), | |
# os.path.join(example_path, 'model/09597_00.jpg'), | |
# os.path.join(example_path, 'model/01861_00.jpg'), | |
# ]) | |
# with gr.Column(): | |
# garm_img = gr.Image(label="Garment", sources='upload', type="filepath", height=384, value=garment_hd) | |
# example = gr.Examples( | |
# inputs=garm_img, | |
# examples_per_page=14, | |
# examples=[ | |
# os.path.join(example_path, 'garment/03244_00.jpg'), | |
# os.path.join(example_path, 'garment/00126_00.jpg'), | |
# os.path.join(example_path, 'garment/03032_00.jpg'), | |
# os.path.join(example_path, 'garment/06123_00.jpg'), | |
# os.path.join(example_path, 'garment/02305_00.jpg'), | |
# os.path.join(example_path, 'garment/00055_00.jpg'), | |
# os.path.join(example_path, 'garment/00470_00.jpg'), | |
# os.path.join(example_path, 'garment/02015_00.jpg'), | |
# os.path.join(example_path, 'garment/10297_00.jpg'), | |
# os.path.join(example_path, 'garment/07382_00.jpg'), | |
# os.path.join(example_path, 'garment/07764_00.jpg'), | |
# os.path.join(example_path, 'garment/00151_00.jpg'), | |
# os.path.join(example_path, 'garment/12562_00.jpg'), | |
# os.path.join(example_path, 'garment/04825_00.jpg'), | |
# ]) | |
# with gr.Column(): | |
# result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", preview=True, scale=1) | |
# with gr.Column(): | |
# run_button = gr.Button(value="Run") | |
# n_samples = gr.Slider(label="Images", minimum=1, maximum=4, value=1, step=1) | |
# n_steps = gr.Slider(label="Steps", minimum=20, maximum=40, value=20, step=1) | |
# # scale = gr.Slider(label="Scale", minimum=1.0, maximum=12.0, value=5.0, step=0.1) | |
# image_scale = gr.Slider(label="Guidance scale", minimum=1.0, maximum=5.0, value=2.0, step=0.1) | |
# seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, value=-1) | |
# ips = [vton_img, garm_img, n_samples, n_steps, image_scale, seed] | |
# run_button.click(fn=process_hd, inputs=ips, outputs=[result_gallery]) | |
with gr.Row(): | |
gr.Markdown("## Virtual Trial Room") | |
with gr.Row(): | |
gr.Markdown("*** Note :- Please Select Garment Type in below drop-down as upper-body/lower-body/dresses;***") | |
with gr.Row(): | |
with gr.Column(): | |
vton_img_dc = gr.Image(label="Model", sources='upload', type="filepath", height=384, value=model_dc) | |
example = gr.Examples( | |
label="Select for Upper/Lower Body", | |
inputs=vton_img_dc, | |
examples_per_page=7, | |
examples=[ | |
os.path.join(example_path, 'model/model_8.png'), | |
os.path.join(example_path, 'model/049447_0.jpg'), | |
os.path.join(example_path, 'model/049713_0.jpg'), | |
os.path.join(example_path, 'model/051482_0.jpg'), | |
os.path.join(example_path, 'model/051918_0.jpg'), | |
os.path.join(example_path, 'model/051962_0.jpg'), | |
os.path.join(example_path, 'model/049205_0.jpg'), | |
] | |
) | |
example = gr.Examples( | |
label="Select for Full Body Dress", | |
inputs=vton_img_dc, | |
examples_per_page=7, | |
examples=[ | |
os.path.join(example_path, 'model/model_9.png'), | |
# os.path.join(example_path, 'model/052767_0.jpg'), | |
# os.path.join(example_path, 'model/052472_0.jpg'), | |
os.path.join(example_path, 'model/053514_0.jpg'), | |
os.path.join(example_path, 'model/male/male_side.png'), | |
os.path.join(example_path, 'model/male/male_2.png'), | |
os.path.join(example_path, 'model/male/femal_s_34.png'), | |
os.path.join(example_path, 'model/male/femal_s_34_test.png'), | |
os.path.join(example_path, 'model/male/male_small.png'), | |
os.path.join(example_path, 'model/male/female.png'), | |
# os.path.join(example_path, 'model/053228_0.jpg'), | |
# os.path.join(example_path, 'model/052964_0.jpg'), | |
# os.path.join(example_path, 'model/053700_0.jpg'), | |
] | |
) | |
with gr.Column(): | |
garm_img_dc = gr.Image(label="Garment", sources='upload', type="filepath", height=384, value=garment_dc) | |
category_dc = gr.Dropdown(label="Garment category (important option!!!)", choices=["Upper-body", "Lower-body", "Dress"], value="Upper-body") | |
example = gr.Examples( | |
label="Examples (upper-body)", | |
inputs=garm_img_dc, | |
examples_per_page=7, | |
examples=[ | |
os.path.join(example_path,'garment/01260_00.jpg'), | |
os.path.join(example_path,'garment/01430_00.jpg'), | |
os.path.join(example_path,'garment/02783_00.jpg'), | |
os.path.join(example_path,'garment/03751_00.jpg'), | |
os.path.join(example_path,'garment/06429_00.jpg'), | |
os.path.join(example_path,'garment/06802_00.jpg'), | |
os.path.join(example_path,'garment/07429_00.jpg'), | |
os.path.join(example_path,'garment/08348_00.jpg'), | |
os.path.join(example_path,'garment/09933_00.jpg'), | |
os.path.join(example_path,'garment/11028_00.jpg'), | |
os.path.join(example_path,'garment/11351_00.jpg'), | |
os.path.join(example_path,'garment/11791_00.jpg'), | |
os.path.join(example_path, 'garment/048554_1.jpg'), | |
os.path.join(example_path, 'garment/049920_1.jpg'), | |
os.path.join(example_path, 'garment/049965_1.jpg'), | |
os.path.join(example_path, 'garment/049949_1.jpg'), | |
os.path.join(example_path, 'garment/050181_1.jpg'), | |
os.path.join(example_path, 'garment/049805_1.jpg'), | |
os.path.join(example_path, 'garment/050105_1.jpg'), | |
os.path.join(example_path, 'garment/male_tshirt1.png'), | |
]) | |
example = gr.Examples( | |
label="Examples (lower-body)", | |
inputs=garm_img_dc, | |
examples_per_page=7, | |
examples=[ | |
os.path.join(example_path, 'garment/051827_1.jpg'), | |
os.path.join(example_path, 'garment/051946_1.jpg'), | |
os.path.join(example_path, 'garment/051473_1.jpg'), | |
os.path.join(example_path, 'garment/051515_1.jpg'), | |
os.path.join(example_path, 'garment/051517_1.jpg'), | |
os.path.join(example_path, 'garment/051988_1.jpg'), | |
os.path.join(example_path, 'garment/051412_1.jpg'), | |
]) | |
example = gr.Examples( | |
label="Examples (dress)", | |
inputs=garm_img_dc, | |
examples_per_page=7, | |
examples=[ | |
os.path.join(example_path, 'garment/053290_1.jpg'), | |
os.path.join(example_path, 'garment/053744_1.jpg'), | |
os.path.join(example_path, 'garment/053742_1.jpg'), | |
os.path.join(example_path, 'garment/053786_1.jpg'), | |
os.path.join(example_path, 'garment/053790_1.jpg'), | |
os.path.join(example_path, 'garment/053319_1.jpg'), | |
os.path.join(example_path, 'garment/052234_1.jpg'), | |
]) | |
with gr.Column(): | |
result_gallery_dc = gr.Gallery(label='Output', show_label=False, elem_id="gallery", preview=True, scale=1) | |
with gr.Column(): | |
run_button_dc = gr.Button(value="Run") | |
# n_samples_dc = gr.Slider(label="Images", minimum=1, maximum=4, value=1, step=1) | |
# n_steps_dc = gr.Slider(label="Steps", minimum=20, maximum=40, value=20, step=1) | |
# scale_dc = gr.Slider(label="Scale", minimum=1.0, maximum=12.0, value=5.0, step=0.1) | |
# image_scale_dc = gr.Slider(label="Guidance scale", minimum=1.0, maximum=5.0, value=2.0, step=0.1) | |
# seed_dc = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, value=-1) | |
ips_dc = [vton_img_dc, garm_img_dc, category_dc] | |
run_button_dc.click(fn=process_dc, inputs=ips_dc, outputs=[result_gallery_dc]) | |
block.launch(server_name="0.0.0.0", server_port=7860 ) | |