multimodalart's picture
Upload 2025 files
22a452a verified
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# ControlNet
[ControlNet](https://huggingface.co/papers/2302.05543) is an adapter that enables controllable generation such as generating an image of a cat in a *specific pose* or following the lines in a sketch of a *specific* cat. It works by adding a smaller network of "zero convolution" layers and progressively training these to avoid disrupting with the original model. The original model parameters are frozen to avoid retraining it.
A ControlNet is conditioned on extra visual information or "structural controls" (canny edge, depth maps, human pose, etc.) that can be combined with text prompts to generate images that are guided by the visual input.
> [!TIP]
> ControlNets are available to many models such as [Flux](../api/pipelines/controlnet_flux), [Hunyuan-DiT](../api/pipelines/controlnet_hunyuandit), [Stable Diffusion 3](../api/pipelines/controlnet_sd3), and more. The examples in this guide use Flux and Stable Diffusion XL.
Load a ControlNet conditioned on a specific control, such as canny edge, and pass it to the pipeline in [`~DiffusionPipeline.from_pretrained`].
<hfoptions id="usage">
<hfoption id="text-to-image">
Generate a canny image with [opencv-python](https://github.com/opencv/opencv-python).
```py
import cv2
import numpy as np
from PIL import Image
from diffusers.utils import load_image
original_image = load_image(
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/non-enhanced-prompt.png"
)
image = np.array(original_image)
low_threshold = 100
high_threshold = 200
image = cv2.Canny(image, low_threshold, high_threshold)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
canny_image = Image.fromarray(image)
```
Pass the canny image to the pipeline. Use the `controlnet_conditioning_scale` parameter to determine how much weight to assign to the control.
```py
import torch
from diffusers.utils import load_image
from diffusers import FluxControlNetPipeline, FluxControlNetModel
controlnet = FluxControlNetModel.from_pretrained(
"InstantX/FLUX.1-dev-Controlnet-Canny", torch_dtype=torch.bfloat16
)
pipeline = FluxControlNetPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev", controlnet=controlnet, torch_dtype=torch.bfloat16
).to("cuda")
prompt = """
A photorealistic overhead image of a cat reclining sideways in a flamingo pool floatie holding a margarita.
The cat is floating leisurely in the pool and completely relaxed and happy.
"""
pipeline(
prompt,
control_image=canny_image,
controlnet_conditioning_scale=0.5,
num_inference_steps=50,
guidance_scale=3.5,
).images[0]
```
<div style="display: flex; gap: 10px; justify-content: space-around; align-items: flex-end;">
<figure>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/non-enhanced-prompt.png" width="300" alt="Generated image (prompt only)"/>
<figcaption style="text-align: center;">original image</figcaption>
</figure>
<figure>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/canny-cat.png" width="300" alt="Control image (Canny edges)"/>
<figcaption style="text-align: center;">canny image</figcaption>
</figure>
<figure>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/canny-cat-generated.png" width="300" alt="Generated image (ControlNet + prompt)"/>
<figcaption style="text-align: center;">generated image</figcaption>
</figure>
</div>
</hfoption>
<hfoption id="image-to-image">
Generate a depth map with a depth estimation pipeline from Transformers.
```py
import torch
import numpy as np
from PIL import Image
from transformers import DPTImageProcessor, DPTForDepthEstimation
from diffusers import ControlNetModel, StableDiffusionXLControlNetImg2ImgPipeline, AutoencoderKL
from diffusers.utils import load_image
depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to("cuda")
feature_extractor = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas")
def get_depth_map(image):
image = feature_extractor(images=image, return_tensors="pt").pixel_values.to("cuda")
with torch.no_grad(), torch.autocast("cuda"):
depth_map = depth_estimator(image).predicted_depth
depth_map = torch.nn.functional.interpolate(
depth_map.unsqueeze(1),
size=(1024, 1024),
mode="bicubic",
align_corners=False,
)
depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
depth_map = (depth_map - depth_min) / (depth_max - depth_min)
image = torch.cat([depth_map] * 3, dim=1)
image = image.permute(0, 2, 3, 1).cpu().numpy()[0]
image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8))
return image
depth_image = get_depth_map(image)
```
Pass the depth map to the pipeline. Use the `controlnet_conditioning_scale` parameter to determine how much weight to assign to the control.
```py
controlnet = ControlNetModel.from_pretrained(
"diffusers/controlnet-depth-sdxl-1.0-small",
torch_dtype=torch.float16,
)
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
pipeline = StableDiffusionXLControlNetImg2ImgPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
controlnet=controlnet,
vae=vae,
torch_dtype=torch.float16,
).to("cuda")
prompt = """
A photorealistic overhead image of a cat reclining sideways in a flamingo pool floatie holding a margarita.
The cat is floating leisurely in the pool and completely relaxed and happy.
"""
image = load_image(
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/non-enhanced-prompt.png"
).resize((1024, 1024))
controlnet_conditioning_scale = 0.5
pipeline(
prompt,
image=image,
control_image=depth_image,
controlnet_conditioning_scale=controlnet_conditioning_scale,
strength=0.99,
num_inference_steps=100,
).images[0]
```
<div style="display: flex; gap: 10px; justify-content: space-around; align-items: flex-end;">
<figure>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/non-enhanced-prompt.png" width="300" alt="Generated image (prompt only)"/>
<figcaption style="text-align: center;">original image</figcaption>
</figure>
<figure>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl_depth_image.png" width="300" alt="Control image (Canny edges)"/>
<figcaption style="text-align: center;">depth map</figcaption>
</figure>
<figure>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl_depth_cat.png" width="300" alt="Generated image (ControlNet + prompt)"/>
<figcaption style="text-align: center;">generated image</figcaption>
</figure>
</div>
</hfoption>
<hfoption id="inpainting">
Generate a mask image and convert it to a tensor to mark the pixels in the original image as masked if the corresponding pixel in the mask image is over a certain threshold.
```py
import cv2
import torch
import numpy as np
from PIL import Image
from diffusers.utils import load_image
from diffusers import StableDiffusionXLControlNetInpaintPipeline, ControlNetModel
init_image = load_image(
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/non-enhanced-prompt.png"
)
init_image = init_image.resize((1024, 1024))
mask_image = load_image(
"/content/cat_mask.png"
)
mask_image = mask_image.resize((1024, 1024))
def make_canny_condition(image):
image = np.array(image)
image = cv2.Canny(image, 100, 200)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
image = Image.fromarray(image)
return image
control_image = make_canny_condition(init_image)
```
Pass the mask and control image to the pipeline. Use the `controlnet_conditioning_scale` parameter to determine how much weight to assign to the control.
```py
controlnet = ControlNetModel.from_pretrained(
"diffusers/controlnet-canny-sdxl-1.0", torch_dtype=torch.float16
)
pipeline = StableDiffusionXLControlNetInpaintPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, torch_dtype=torch.float16
)
pipeline(
"a cute and fluffy bunny rabbit",
num_inference_steps=100,
strength=0.99,
controlnet_conditioning_scale=0.5,
image=init_image,
mask_image=mask_image,
control_image=control_image,
).images[0]
```
<div style="display: flex; gap: 10px; justify-content: space-around; align-items: flex-end;">
<figure>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/non-enhanced-prompt.png" width="300" alt="Generated image (prompt only)"/>
<figcaption style="text-align: center;">original image</figcaption>
</figure>
<figure>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cat_mask.png" width="300" alt="Control image (Canny edges)"/>
<figcaption style="text-align: center;">mask image</figcaption>
</figure>
<figure>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl_rabbit_inpaint.png" width="300" alt="Generated image (ControlNet + prompt)"/>
<figcaption style="text-align: center;">generated image</figcaption>
</figure>
</div>
</hfoption>
</hfoptions>
## Multi-ControlNet
You can compose multiple ControlNet conditionings, such as canny image and a depth map, to create a *MultiControlNet*. For the best rersults, you should mask conditionings so they don't overlap and experiment with different `controlnet_conditioning_scale` parameters to adjust how much weight is assigned to each control input.
The example below composes a canny image and depth map.
Pass the ControlNets as a list to the pipeline and resize the images to the expected input size.
```py
import torch
from diffusers import StableDiffusionXLControlNetPipeline, ControlNetModel, AutoencoderKL
controlnets = [
ControlNetModel.from_pretrained(
"diffusers/controlnet-depth-sdxl-1.0-small", torch_dtype=torch.float16
),
ControlNetModel.from_pretrained(
"diffusers/controlnet-canny-sdxl-1.0", torch_dtype=torch.float16,
),
]
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
pipeline = StableDiffusionXLControlNetPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnets, vae=vae, torch_dtype=torch.float16
).to("cuda")
prompt = """
a relaxed rabbit sitting on a striped towel next to a pool with a tropical drink nearby,
bright sunny day, vacation scene, 35mm photograph, film, professional, 4k, highly detailed
"""
negative_prompt = "lowres, bad anatomy, worst quality, low quality, deformed, ugly"
images = [canny_image.resize((1024, 1024)), depth_image.resize((1024, 1024))]
pipeline(
prompt,
negative_prompt=negative_prompt,
image=images,
num_inference_steps=100,
controlnet_conditioning_scale=[0.5, 0.5],
strength=0.7,
).images[0]
```
<div style="display: flex; gap: 10px; justify-content: space-around; align-items: flex-end;">
<figure>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/canny-cat.png" width="300" alt="Generated image (prompt only)"/>
<figcaption style="text-align: center;">canny image</figcaption>
</figure>
<figure>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/multicontrolnet_depth.png" width="300" alt="Control image (Canny edges)"/>
<figcaption style="text-align: center;">depth map</figcaption>
</figure>
<figure>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl_multi_controlnet.png" width="300" alt="Generated image (ControlNet + prompt)"/>
<figcaption style="text-align: center;">generated image</figcaption>
</figure>
</div>
## guess_mode
[Guess mode](https://github.com/lllyasviel/ControlNet/discussions/188) generates an image from **only** the control input (canny edge, depth map, pose, etc.) and without guidance from a prompt. It adjusts the scale of the ControlNet's output residuals by a fixed ratio depending on block depth. The earlier `DownBlock` is only scaled by `0.1` and the `MidBlock` is fully scaled by `1.0`.
```py
import torch
from diffusers.utils import load_iamge
from diffusers import StableDiffusionXLControlNetPipeline, ControlNetModel
controlnet = ControlNetModel.from_pretrained(
"diffusers/controlnet-canny-sdxl-1.0", torch_dtype=torch.float16
)
pipeline = StableDiffusionXLControlNetPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
controlnet=controlnet,
torch_dtype=torch.float16
).to("cuda")
canny_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/canny-cat.png")
pipeline(
"",
image=canny_image,
guess_mode=True
).images[0]
```
<div style="display: flex; gap: 10px; justify-content: space-around; align-items: flex-end;">
<figure>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/canny-cat.png" width="300" alt="Control image (Canny edges)"/>
<figcaption style="text-align: center;">canny image</figcaption>
</figure>
<figure>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/guess_mode.png" width="300" alt="Generated image (Guess mode)"/>
<figcaption style="text-align: center;">generated image</figcaption>
</figure>
</div>