Cosmos-Predict2-2B / diffusers_repo /tests /hooks /test_group_offloading.py
multimodalart's picture
Upload 2025 files
22a452a verified
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import contextlib
import gc
import unittest
import torch
from diffusers.models import ModelMixin
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.utils import get_logger
from diffusers.utils.import_utils import compare_versions
from diffusers.utils.testing_utils import (
backend_empty_cache,
backend_max_memory_allocated,
backend_reset_peak_memory_stats,
require_torch_accelerator,
torch_device,
)
class DummyBlock(torch.nn.Module):
def __init__(self, in_features: int, hidden_features: int, out_features: int) -> None:
super().__init__()
self.proj_in = torch.nn.Linear(in_features, hidden_features)
self.activation = torch.nn.ReLU()
self.proj_out = torch.nn.Linear(hidden_features, out_features)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.proj_in(x)
x = self.activation(x)
x = self.proj_out(x)
return x
class DummyModel(ModelMixin):
def __init__(self, in_features: int, hidden_features: int, out_features: int, num_layers: int) -> None:
super().__init__()
self.linear_1 = torch.nn.Linear(in_features, hidden_features)
self.activation = torch.nn.ReLU()
self.blocks = torch.nn.ModuleList(
[DummyBlock(hidden_features, hidden_features, hidden_features) for _ in range(num_layers)]
)
self.linear_2 = torch.nn.Linear(hidden_features, out_features)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.linear_1(x)
x = self.activation(x)
for block in self.blocks:
x = block(x)
x = self.linear_2(x)
return x
# This model implementation contains one type of block (single_blocks) instantiated before another type of block (double_blocks).
# The invocation order of these blocks, however, is first the double_blocks and then the single_blocks.
# With group offloading implementation before https://github.com/huggingface/diffusers/pull/11375, such a modeling implementation
# would result in a device mismatch error because of the assumptions made by the code. The failure case occurs when using:
# offload_type="block_level", num_blocks_per_group=2, use_stream=True
# Post the linked PR, the implementation will work as expected.
class DummyModelWithMultipleBlocks(ModelMixin):
def __init__(
self, in_features: int, hidden_features: int, out_features: int, num_layers: int, num_single_layers: int
) -> None:
super().__init__()
self.linear_1 = torch.nn.Linear(in_features, hidden_features)
self.activation = torch.nn.ReLU()
self.single_blocks = torch.nn.ModuleList(
[DummyBlock(hidden_features, hidden_features, hidden_features) for _ in range(num_single_layers)]
)
self.double_blocks = torch.nn.ModuleList(
[DummyBlock(hidden_features, hidden_features, hidden_features) for _ in range(num_layers)]
)
self.linear_2 = torch.nn.Linear(hidden_features, out_features)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.linear_1(x)
x = self.activation(x)
for block in self.double_blocks:
x = block(x)
for block in self.single_blocks:
x = block(x)
x = self.linear_2(x)
return x
class DummyPipeline(DiffusionPipeline):
model_cpu_offload_seq = "model"
def __init__(self, model: torch.nn.Module) -> None:
super().__init__()
self.register_modules(model=model)
def __call__(self, x: torch.Tensor) -> torch.Tensor:
for _ in range(2):
x = x + 0.1 * self.model(x)
return x
@require_torch_accelerator
class GroupOffloadTests(unittest.TestCase):
in_features = 64
hidden_features = 256
out_features = 64
num_layers = 4
def setUp(self):
with torch.no_grad():
self.model = self.get_model()
self.input = torch.randn((4, self.in_features)).to(torch_device)
def tearDown(self):
super().tearDown()
del self.model
del self.input
gc.collect()
backend_empty_cache(torch_device)
backend_reset_peak_memory_stats(torch_device)
def get_model(self):
torch.manual_seed(0)
return DummyModel(
in_features=self.in_features,
hidden_features=self.hidden_features,
out_features=self.out_features,
num_layers=self.num_layers,
)
def test_offloading_forward_pass(self):
@torch.no_grad()
def run_forward(model):
gc.collect()
backend_empty_cache(torch_device)
backend_reset_peak_memory_stats(torch_device)
self.assertTrue(
all(
module._diffusers_hook.get_hook("group_offloading") is not None
for module in model.modules()
if hasattr(module, "_diffusers_hook")
)
)
model.eval()
output = model(self.input)[0].cpu()
max_memory_allocated = backend_max_memory_allocated(torch_device)
return output, max_memory_allocated
self.model.to(torch_device)
output_without_group_offloading, mem_baseline = run_forward(self.model)
self.model.to("cpu")
model = self.get_model()
model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=3)
output_with_group_offloading1, mem1 = run_forward(model)
model = self.get_model()
model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=1)
output_with_group_offloading2, mem2 = run_forward(model)
model = self.get_model()
model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=1, use_stream=True)
output_with_group_offloading3, mem3 = run_forward(model)
model = self.get_model()
model.enable_group_offload(torch_device, offload_type="leaf_level")
output_with_group_offloading4, mem4 = run_forward(model)
model = self.get_model()
model.enable_group_offload(torch_device, offload_type="leaf_level", use_stream=True)
output_with_group_offloading5, mem5 = run_forward(model)
# Precision assertions - offloading should not impact the output
self.assertTrue(torch.allclose(output_without_group_offloading, output_with_group_offloading1, atol=1e-5))
self.assertTrue(torch.allclose(output_without_group_offloading, output_with_group_offloading2, atol=1e-5))
self.assertTrue(torch.allclose(output_without_group_offloading, output_with_group_offloading3, atol=1e-5))
self.assertTrue(torch.allclose(output_without_group_offloading, output_with_group_offloading4, atol=1e-5))
self.assertTrue(torch.allclose(output_without_group_offloading, output_with_group_offloading5, atol=1e-5))
# Memory assertions - offloading should reduce memory usage
self.assertTrue(mem4 <= mem5 < mem2 <= mem3 < mem1 < mem_baseline)
def test_warning_logged_if_group_offloaded_module_moved_to_accelerator(self):
if torch.device(torch_device).type not in ["cuda", "xpu"]:
return
self.model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=3)
logger = get_logger("diffusers.models.modeling_utils")
logger.setLevel("INFO")
with self.assertLogs(logger, level="WARNING") as cm:
self.model.to(torch_device)
self.assertIn(f"The module '{self.model.__class__.__name__}' is group offloaded", cm.output[0])
def test_warning_logged_if_group_offloaded_pipe_moved_to_accelerator(self):
if torch.device(torch_device).type not in ["cuda", "xpu"]:
return
pipe = DummyPipeline(self.model)
self.model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=3)
logger = get_logger("diffusers.pipelines.pipeline_utils")
logger.setLevel("INFO")
with self.assertLogs(logger, level="WARNING") as cm:
pipe.to(torch_device)
self.assertIn(f"The module '{self.model.__class__.__name__}' is group offloaded", cm.output[0])
def test_error_raised_if_streams_used_and_no_accelerator_device(self):
torch_accelerator_module = getattr(torch, torch_device, torch.cuda)
original_is_available = torch_accelerator_module.is_available
torch_accelerator_module.is_available = lambda: False
with self.assertRaises(ValueError):
self.model.enable_group_offload(
onload_device=torch.device(torch_device), offload_type="leaf_level", use_stream=True
)
torch_accelerator_module.is_available = original_is_available
def test_error_raised_if_supports_group_offloading_false(self):
self.model._supports_group_offloading = False
with self.assertRaisesRegex(ValueError, "does not support group offloading"):
self.model.enable_group_offload(onload_device=torch.device(torch_device))
def test_error_raised_if_model_offloading_applied_on_group_offloaded_module(self):
pipe = DummyPipeline(self.model)
pipe.model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=3)
with self.assertRaisesRegex(ValueError, "You are trying to apply model/sequential CPU offloading"):
pipe.enable_model_cpu_offload()
def test_error_raised_if_sequential_offloading_applied_on_group_offloaded_module(self):
pipe = DummyPipeline(self.model)
pipe.model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=3)
with self.assertRaisesRegex(ValueError, "You are trying to apply model/sequential CPU offloading"):
pipe.enable_sequential_cpu_offload()
def test_error_raised_if_group_offloading_applied_on_model_offloaded_module(self):
pipe = DummyPipeline(self.model)
pipe.enable_model_cpu_offload()
with self.assertRaisesRegex(ValueError, "Cannot apply group offloading"):
pipe.model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=3)
def test_error_raised_if_group_offloading_applied_on_sequential_offloaded_module(self):
pipe = DummyPipeline(self.model)
pipe.enable_sequential_cpu_offload()
with self.assertRaisesRegex(ValueError, "Cannot apply group offloading"):
pipe.model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=3)
def test_block_level_stream_with_invocation_order_different_from_initialization_order(self):
if torch.device(torch_device).type not in ["cuda", "xpu"]:
return
model = DummyModelWithMultipleBlocks(
in_features=self.in_features,
hidden_features=self.hidden_features,
out_features=self.out_features,
num_layers=self.num_layers,
num_single_layers=self.num_layers + 1,
)
model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=1, use_stream=True)
context = contextlib.nullcontext()
if compare_versions("diffusers", "<=", "0.33.0"):
# Will raise a device mismatch RuntimeError mentioning weights are on CPU but input is on device
context = self.assertRaisesRegex(RuntimeError, "Expected all tensors to be on the same device")
with context:
model(self.input)