File size: 6,106 Bytes
c4c0d2b
3ce85b9
c4c0d2b
 
 
 
 
 
 
 
3ce85b9
aaee24f
c4c0d2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aaee24f
c4c0d2b
 
 
 
 
 
 
 
 
 
 
 
 
 
aaee24f
 
c4c0d2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ce85b9
c4c0d2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
from pydoc import describe
import gradio as gr
import torch
from omegaconf import OmegaConf
import sys 
sys.path.append(".")
sys.path.append('./taming-transformers')
sys.path.append('./latent-diffusion')
from taming.models import vqgan 
from ldm.util import instantiate_from_config

#torch.hub.download_url_to_file('https://ommer-lab.com/files/latent-diffusion/nitro/txt2img-f8-large/model.ckpt','txt2img-f8-large.ckpt')

#@title Import stuff
import argparse, os, sys, glob
import numpy as np
from PIL import Image
from einops import rearrange
from torchvision.utils import make_grid
import transformers
import gc
from ldm.util import instantiate_from_config
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.plms import PLMSSampler


def load_model_from_config(config, ckpt, verbose=False):
    print(f"Loading model from {ckpt}")
    pl_sd = torch.load(ckpt, map_location="cuda")
    sd = pl_sd["state_dict"]
    model = instantiate_from_config(config.model)
    m, u = model.load_state_dict(sd, strict=False)
    if len(m) > 0 and verbose:
        print("missing keys:")
        print(m)
    if len(u) > 0 and verbose:
        print("unexpected keys:")
        print(u)

    model = model.half().cuda()
    model.eval()
    return model

config = OmegaConf.load("latent-diffusion/configs/latent-diffusion/txt2img-1p4B-eval.yaml")
model = load_model_from_config(config, f"txt2img-f8-large.ckpt")
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model = model.to(device)

def run(prompt, steps, width, height, images, scale, eta):
    if images == 6:
        images = 3
        n_iter = 2
    else:
        n_iter = 1
    opt = argparse.Namespace(
        prompt = prompt, 
        outdir='latent-diffusion/outputs',
        ddim_steps = int(steps),
        ddim_eta = eta,
        n_iter = n_iter,
        W=int(width),
        H=int(height),
        n_samples=int(images),
        scale=scale,
        plms=True
    )
    if opt.plms:
        opt.ddim_eta = 0
        sampler = PLMSSampler(model)
    else:
        sampler = DDIMSampler(model)
    
    os.makedirs(opt.outdir, exist_ok=True)
    outpath = opt.outdir

    prompt = opt.prompt


    sample_path = os.path.join(outpath, "samples")
    os.makedirs(sample_path, exist_ok=True)
    base_count = len(os.listdir(sample_path))

    all_samples=list()
    all_samples_images=list()
    with torch.no_grad():
        with torch.cuda.amp.autocast():
            with model.ema_scope():
                uc = None
                if opt.scale > 0:
                    uc = model.get_learned_conditioning(opt.n_samples * [""])
                for n in range(opt.n_iter):
                    c = model.get_learned_conditioning(opt.n_samples * [prompt])
                    shape = [4, opt.H//8, opt.W//8]
                    samples_ddim, _ = sampler.sample(S=opt.ddim_steps,
                                                    conditioning=c,
                                                    batch_size=opt.n_samples,
                                                    shape=shape,
                                                    verbose=False,
                                                    unconditional_guidance_scale=opt.scale,
                                                    unconditional_conditioning=uc,
                                                    eta=opt.ddim_eta)

                    x_samples_ddim = model.decode_first_stage(samples_ddim)
                    x_samples_ddim = torch.clamp((x_samples_ddim+1.0)/2.0, min=0.0, max=1.0)

                    for x_sample in x_samples_ddim:
                        x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
                        all_samples_images.append(Image.fromarray(x_sample.astype(np.uint8)))
                        #Image.fromarray(x_sample.astype(np.uint8)).save(os.path.join(sample_path, f"{base_count:04}.png"))
                        base_count += 1
                    all_samples.append(x_samples_ddim)
                    
    
    # additionally, save as grid
    grid = torch.stack(all_samples, 0)
    grid = rearrange(grid, 'n b c h w -> (n b) c h w')
    grid = make_grid(grid, nrow=2)
    # to image
    grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy()
    
    Image.fromarray(grid.astype(np.uint8)).save(os.path.join(outpath, f'{prompt.replace(" ", "-")}.png'))
    return(Image.fromarray(grid.astype(np.uint8)),all_samples_images)

image = gr.outputs.Image(type="pil", label="Your result")
css = ".output-image{height: 528px !important} .output-carousel .output-image{height:272px !important}"
iface = gr.Interface(fn=run, inputs=[
    gr.inputs.Textbox(label="Prompt",default="A drawing of a cute dog with a funny hat"),
    gr.inputs.Slider(label="Steps - more steps can increase quality but will take longer to generate",default=50,maximum=250,minimum=1,step=1),
    gr.inputs.Slider(label="Width", minimum=64, maximum=256, default=256, step=64),
    gr.inputs.Slider(label="Height", minimum=64, maximum=256, default=256, step=64),
    gr.inputs.Slider(label="Images - How many images you wish to generate", default=4, step=2, minimum=2, maximum=6),
    gr.inputs.Slider(label="Diversity scale - How different from one another you wish the images to be",default=5.0, minimum=1),
    gr.inputs.Slider(label="ETA - between 0 and 1. Lower values can provide better quality, higher values can be more diverse",default=0.0,minimum=0.0, maximum=1.0,step=0.1),
    
    ], 
    outputs=[image,gr.outputs.Carousel(label="Individual images",components=["image"])],
    css=css,
    title="Generate images from text with Latent Diffusion LAION-400M",
    description="<div>By typing a text and clicking submit you can generate images based on this text. This is a text-to-image model created by CompVis, trained on the LAION-400M dataset.<br>For more multimodal ai art check us out <a style='color: rgb(245, 158, 11);font-weight:bold' href='https://twitter.com/multimodalart' target='_blank'>@multimodalart</a></div>")
iface.launch(enable_queue=True)