Spaces:
Sleeping
Sleeping
from pydoc import describe | |
import gradio as gr | |
import torch | |
from omegaconf import OmegaConf | |
import sys | |
sys.path.append(".") | |
sys.path.append('./taming-transformers') | |
sys.path.append('./latent-diffusion') | |
from taming.models import vqgan | |
from ldm.util import instantiate_from_config | |
torch.hub.download_url_to_file('http://batbot.ai/models/latent-diffusion/models/ldm/text2img-large/model.ckpt','txt2img-f8-large.ckpt') | |
#@title Import stuff | |
import argparse, os, sys, glob | |
import numpy as np | |
from PIL import Image | |
from einops import rearrange | |
from torchvision.utils import make_grid | |
import transformers | |
import gc | |
from ldm.util import instantiate_from_config | |
from ldm.models.diffusion.ddim import DDIMSampler | |
from ldm.models.diffusion.plms import PLMSSampler | |
from open_clip import tokenizer | |
import open_clip | |
def load_model_from_config(config, ckpt, verbose=False): | |
print(f"Loading model from {ckpt}") | |
pl_sd = torch.load(ckpt, map_location="cuda") | |
sd = pl_sd["state_dict"] | |
model = instantiate_from_config(config.model) | |
m, u = model.load_state_dict(sd, strict=False) | |
if len(m) > 0 and verbose: | |
print("missing keys:") | |
print(m) | |
if len(u) > 0 and verbose: | |
print("unexpected keys:") | |
print(u) | |
model = model.half().cuda() | |
model.eval() | |
return model | |
config = OmegaConf.load("latent-diffusion/configs/latent-diffusion/txt2img-1p4B-eval.yaml") | |
model = load_model_from_config(config, f"txt2img-f8-large.ckpt") | |
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") | |
model = model.to(device) | |
#NSFW CLIP Filter | |
clip_model, _, preprocess = open_clip.create_model_and_transforms('ViT-B-32-quickgelu', pretrained='laion400m_e32') | |
text = tokenizer.tokenize(["NSFW", "adult content", "porn", "naked people","genitalia","penis","vagina"]) | |
with torch.no_grad(): | |
text_features = clip_model.encode_text(text) | |
def run(prompt, steps, width, height, images, scale): | |
opt = argparse.Namespace( | |
prompt = prompt, | |
outdir='latent-diffusion/outputs', | |
ddim_steps = int(steps), | |
ddim_eta = 0, | |
n_iter = 1, | |
W=int(width), | |
H=int(height), | |
n_samples=int(images), | |
scale=scale, | |
plms=True | |
) | |
if opt.plms: | |
opt.ddim_eta = 0 | |
sampler = PLMSSampler(model) | |
else: | |
sampler = DDIMSampler(model) | |
os.makedirs(opt.outdir, exist_ok=True) | |
outpath = opt.outdir | |
prompt = opt.prompt | |
sample_path = os.path.join(outpath, "samples") | |
os.makedirs(sample_path, exist_ok=True) | |
base_count = len(os.listdir(sample_path)) | |
all_samples=list() | |
all_samples_images=list() | |
with torch.no_grad(): | |
with torch.cuda.amp.autocast(): | |
with model.ema_scope(): | |
uc = None | |
if opt.scale > 0: | |
uc = model.get_learned_conditioning(opt.n_samples * [""]) | |
for n in range(opt.n_iter): | |
c = model.get_learned_conditioning(opt.n_samples * [prompt]) | |
shape = [4, opt.H//8, opt.W//8] | |
samples_ddim, _ = sampler.sample(S=opt.ddim_steps, | |
conditioning=c, | |
batch_size=opt.n_samples, | |
shape=shape, | |
verbose=False, | |
unconditional_guidance_scale=opt.scale, | |
unconditional_conditioning=uc, | |
eta=opt.ddim_eta) | |
x_samples_ddim = model.decode_first_stage(samples_ddim) | |
x_samples_ddim = torch.clamp((x_samples_ddim+1.0)/2.0, min=0.0, max=1.0) | |
for x_sample in x_samples_ddim: | |
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c') | |
image_vector = Image.fromarray(x_sample.astype(np.uint8)) | |
image = preprocess(image_vector).unsqueeze(0) | |
image_features = clip_model.encode_image(image) | |
sims = image_features @ text_features.T | |
if(sims.max()<18): | |
all_samples_images.append(image_vector) | |
else: | |
return(None,None,"Sorry, NSFW content was detected on your outputs. Try again with different prompts. If you feel your prompt was not supposed to give NSFW outputs, this may be due to a bias in the model. Read more about biases in the Biases Acknowledgment section below.") | |
#Image.fromarray(x_sample.astype(np.uint8)).save(os.path.join(sample_path, f"{base_count:04}.png")) | |
base_count += 1 | |
all_samples.append(x_samples_ddim) | |
# additionally, save as grid | |
grid = torch.stack(all_samples, 0) | |
grid = rearrange(grid, 'n b c h w -> (n b) c h w') | |
grid = make_grid(grid, nrow=2) | |
# to image | |
grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy() | |
Image.fromarray(grid.astype(np.uint8)).save(os.path.join(outpath, f'{prompt.replace(" ", "-")}.png')) | |
return(Image.fromarray(grid.astype(np.uint8)),all_samples_images,None) | |
image = gr.outputs.Image(type="pil", label="Your result") | |
css = ".output-image{height: 528px !important} .output-carousel .output-image{height:272px !important} a{text-decoration: underline}" | |
iface = gr.Interface(fn=run, inputs=[ | |
gr.inputs.Textbox(label="Prompt - try adding increments to your prompt such as 'oil on canvas', 'a painting', 'a book cover'",default="chalk pastel drawing of a dog wearing a funny hat"), | |
gr.inputs.Slider(label="Steps - more steps can increase quality but will take longer to generate",default=45,maximum=50,minimum=1,step=1), | |
gr.inputs.Radio(label="Width", choices=[32,64,128,256],default=256), | |
gr.inputs.Radio(label="Height", choices=[32,64,128,256],default=256), | |
gr.inputs.Slider(label="Images - How many images you wish to generate", default=2, step=1, minimum=1, maximum=4), | |
gr.inputs.Slider(label="Diversity scale - How different from one another you wish the images to be",default=5.0, minimum=1.0, maximum=15.0), | |
#gr.inputs.Slider(label="ETA - between 0 and 1. Lower values can provide better quality, higher values can be more diverse",default=0.0,minimum=0.0, maximum=1.0,step=0.1), | |
], | |
outputs=[image,gr.outputs.Carousel(label="Individual images",components=["image"]),gr.outputs.Textbox(label="Error")], | |
css=css, | |
title="Generate images from text with Latent Diffusion LAION-400M", | |
description="<div>By typing a prompt and pressing submit you can generate images based on this prompt. <a href='https://github.com/CompVis/latent-diffusion' target='_blank'>Latent Diffusion</a> is a text-to-image model created by <a href='https://github.com/CompVis' target='_blank'>CompVis</a>, trained on the <a href='https://laion.ai/laion-400-open-dataset/'>LAION-400M dataset.</a><br>This UI to the model was assembled by <a style='color: rgb(245, 158, 11);font-weight:bold' href='https://twitter.com/multimodalart' target='_blank'>@multimodalart</a></div>", | |
article="<h4 style='font-size: 110%;margin-top:.5em'>Biases acknowledgment</h4><div>Despite how impressive being able to turn text into image is, beware to the fact that this model may output content that reinforces or exarcbates societal biases. According to the <a href='https://arxiv.org/abs/2112.10752' target='_blank'>Latent Diffusion paper</a>:<i> \"Deep learning modules tend to reproduce or exacerbate biases that are already present in the data\"</i>. The model was trained on an unfiltered version the LAION-400M dataset, which scrapped non-curated image-text-pairs from the internet (the exception being the the removal of illegal content) and is meant to be used for research purposes, such as this one. <a href='https://laion.ai/laion-400-open-dataset/' target='_blank'>You can read more on LAION's website</a></div><h4 style='font-size: 110%;margin-top:1em'>Who owns the images produced by this demo?</h4><div>Definetly not me! Probably you do. I say probably because the Copyright discussion about AI generated art is ongoing. So <a href='https://www.theverge.com/2022/2/21/22944335/us-copyright-office-reject-ai-generated-art-recent-entrance-to-paradise' target='_blank'>it may be the case that everything produced here falls automatically into the public domain</a>. But in any case it is either yours or is in the public domain.</div>") | |
iface.launch(enable_queue=True) |