Spaces:
Running
on
Zero
Running
on
Zero
File size: 19,419 Bytes
0537464 b720739 1b86783 b720739 1b86783 b720739 1b86783 b720739 1b86783 b720739 d50658d b720739 ec96039 b720739 d50658d b720739 481a175 c0724a8 481a175 1b86783 b720739 dbab9a0 b720739 1b86783 b720739 1b86783 b720739 481a175 b720739 481a175 b720739 1b86783 b720739 aa5e39d 1b86783 aa5e39d b720739 1b86783 b720739 aa5e39d 1b86783 aa5e39d 1b86783 aa5e39d 1b86783 aa5e39d b720739 1b86783 aa5e39d 1b86783 aa5e39d b720739 5fca4b4 1b86783 5fca4b4 b720739 5fca4b4 dbab9a0 b720739 dbab9a0 b720739 1b86783 dbab9a0 1b86783 481a175 b720739 1b86783 b720739 1b86783 b720739 1b86783 b720739 1b86783 aa5e39d 1b86783 aa5e39d b720739 1b86783 aa5e39d b720739 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 |
import subprocess
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
from huggingface_hub import snapshot_download, hf_hub_download
snapshot_download(
repo_id="Wan-AI/Wan2.1-T2V-1.3B",
local_dir="wan_models/Wan2.1-T2V-1.3B",
local_dir_use_symlinks=False,
resume_download=True,
repo_type="model"
)
hf_hub_download(
repo_id="gdhe17/Self-Forcing",
filename="checkpoints/self_forcing_dmd.pt",
local_dir=".",
local_dir_use_symlinks=False
)
import os
import re
import random
import argparse
import hashlib
import urllib.request
import time
from PIL import Image
import spaces
import numpy as np
import torch
import gradio as gr
from omegaconf import OmegaConf
from tqdm import tqdm
import imageio
# Original project imports
from pipeline import CausalInferencePipeline
from demo_utils.constant import ZERO_VAE_CACHE
from demo_utils.vae_block3 import VAEDecoderWrapper
from utils.wan_wrapper import WanDiffusionWrapper, WanTextEncoder
# --- Argument Parsing ---
parser = argparse.ArgumentParser(description="Gradio Demo for Self-Forcing with Frame Streaming")
parser.add_argument('--port', type=int, default=7860, help="Port to run the Gradio app on.")
parser.add_argument('--host', type=str, default='0.0.0.0', help="Host to bind the Gradio app to.")
parser.add_argument("--checkpoint_path", type=str, default='./checkpoints/self_forcing_dmd.pt', help="Path to the model checkpoint.")
parser.add_argument("--config_path", type=str, default='./configs/self_forcing_dmd.yaml', help="Path to the model config.")
parser.add_argument('--share', action='store_true', help="Create a public Gradio link.")
parser.add_argument('--trt', action='store_true', help="Use TensorRT optimized VAE decoder.")
parser.add_argument('--fps', type=float, default=15.0, help="Playback FPS for frame streaming.")
args = parser.parse_args()
gpu = "cuda"
try:
config = OmegaConf.load(args.config_path)
default_config = OmegaConf.load("configs/default_config.yaml")
config = OmegaConf.merge(default_config, config)
except FileNotFoundError as e:
print(f"Error loading config file: {e}\n. Please ensure config files are in the correct path.")
exit(1)
# Initialize Models
print("Initializing models...")
text_encoder = WanTextEncoder()
transformer = WanDiffusionWrapper(is_causal=True)
try:
state_dict = torch.load(args.checkpoint_path, map_location="cpu")
transformer.load_state_dict(state_dict.get('generator_ema', state_dict.get('generator')))
except FileNotFoundError as e:
print(f"Error loading checkpoint: {e}\nPlease ensure the checkpoint '{args.checkpoint_path}' exists.")
exit(1)
text_encoder.eval().to(dtype=torch.float16).requires_grad_(False)
transformer.eval().to(dtype=torch.float16).requires_grad_(False)
text_encoder.to(gpu)
transformer.to(gpu)
APP_STATE = {
"torch_compile_applied": False,
"fp8_applied": False,
"current_use_taehv": False,
"current_vae_decoder": None,
}
def initialize_vae_decoder(use_taehv=False, use_trt=False):
if use_trt:
from demo_utils.vae import VAETRTWrapper
print("Initializing TensorRT VAE Decoder...")
vae_decoder = VAETRTWrapper()
APP_STATE["current_use_taehv"] = False
elif use_taehv:
print("Initializing TAEHV VAE Decoder...")
from demo_utils.taehv import TAEHV
taehv_checkpoint_path = "checkpoints/taew2_1.pth"
if not os.path.exists(taehv_checkpoint_path):
print(f"Downloading TAEHV checkpoint to {taehv_checkpoint_path}...")
os.makedirs("checkpoints", exist_ok=True)
download_url = "https://github.com/madebyollin/taehv/raw/main/taew2_1.pth"
try:
urllib.request.urlretrieve(download_url, taehv_checkpoint_path)
except Exception as e:
raise RuntimeError(f"Failed to download taew2_1.pth: {e}")
class DotDict(dict): __getattr__ = dict.get
class TAEHVDiffusersWrapper(torch.nn.Module):
def __init__(self):
super().__init__()
self.dtype = torch.float16
self.taehv = TAEHV(checkpoint_path=taehv_checkpoint_path).to(self.dtype)
self.config = DotDict(scaling_factor=1.0)
def decode(self, latents, return_dict=None):
return self.taehv.decode_video(latents, parallel=not LOW_MEMORY).mul_(2).sub_(1)
vae_decoder = TAEHVDiffusersWrapper()
APP_STATE["current_use_taehv"] = True
else:
print("Initializing Default VAE Decoder...")
vae_decoder = VAEDecoderWrapper()
try:
vae_state_dict = torch.load('wan_models/Wan2.1-T2V-1.3B/Wan2.1_VAE.pth', map_location="cpu")
decoder_state_dict = {k: v for k, v in vae_state_dict.items() if 'decoder.' in k or 'conv2' in k}
vae_decoder.load_state_dict(decoder_state_dict)
except FileNotFoundError:
print("Warning: Default VAE weights not found.")
APP_STATE["current_use_taehv"] = False
vae_decoder.eval().to(dtype=torch.float16).requires_grad_(False).to(gpu)
APP_STATE["current_vae_decoder"] = vae_decoder
print(f"โ
VAE decoder initialized: {'TAEHV' if use_taehv else 'Default VAE'}")
# Initialize with default VAE
initialize_vae_decoder(use_taehv=False, use_trt=args.trt)
pipeline = CausalInferencePipeline(
config, device=gpu, generator=transformer, text_encoder=text_encoder,
vae=APP_STATE["current_vae_decoder"]
)
pipeline.to(dtype=torch.float16).to(gpu)
# --- Frame Streaming Video Generation Handler ---
@torch.no_grad()
@spaces.GPU
def video_generation_handler(prompt, seed=42, fps=15):
"""
Generator function that yields RGB frames for display in gr.Image.
Includes timing delays for smooth playback.
"""
if seed == -1:
seed = random.randint(0, 2**32 - 1)
print(f"๐ฌ Starting video generation with prompt: '{prompt}' and seed: {seed}")
# Calculate frame delay based on FPS
frame_delay = 1.0 / fps if fps > 0 else 1.0 / 15.0
print("๐ค Encoding text prompt...")
conditional_dict = text_encoder(text_prompts=[prompt])
for key, value in conditional_dict.items():
conditional_dict[key] = value.to(dtype=torch.float16)
# --- Generation Loop ---
rnd = torch.Generator(gpu).manual_seed(int(seed))
pipeline._initialize_kv_cache(1, torch.float16, device=gpu)
pipeline._initialize_crossattn_cache(1, torch.float16, device=gpu)
noise = torch.randn([1, 21, 16, 60, 104], device=gpu, dtype=torch.float16, generator=rnd)
vae_cache, latents_cache = None, None
if not APP_STATE["current_use_taehv"] and not args.trt:
vae_cache = [c.to(device=gpu, dtype=torch.float16) for c in ZERO_VAE_CACHE]
num_blocks = 7
current_start_frame = 0
all_num_frames = [pipeline.num_frame_per_block] * num_blocks
total_frames_yielded = 0
all_frames_for_video = []
for idx, current_num_frames in enumerate(all_num_frames):
print(f"๐ฆ Processing block {idx+1}/{num_blocks} with {current_num_frames} frames")
noisy_input = noise[:, current_start_frame : current_start_frame + current_num_frames]
for step_idx, current_timestep in enumerate(pipeline.denoising_step_list):
timestep = torch.ones([1, current_num_frames], device=noise.device, dtype=torch.int64) * current_timestep
_, denoised_pred = pipeline.generator(
noisy_image_or_video=noisy_input, conditional_dict=conditional_dict,
timestep=timestep, kv_cache=pipeline.kv_cache1,
crossattn_cache=pipeline.crossattn_cache,
current_start=current_start_frame * pipeline.frame_seq_length
)
if step_idx < len(pipeline.denoising_step_list) - 1:
next_timestep = pipeline.denoising_step_list[step_idx + 1]
noisy_input = pipeline.scheduler.add_noise(
denoised_pred.flatten(0, 1), torch.randn_like(denoised_pred.flatten(0, 1)),
next_timestep * torch.ones([1 * current_num_frames], device=noise.device, dtype=torch.long)
).unflatten(0, denoised_pred.shape[:2])
if idx < len(all_num_frames) - 1:
pipeline.generator(
noisy_image_or_video=denoised_pred, conditional_dict=conditional_dict,
timestep=torch.zeros_like(timestep), kv_cache=pipeline.kv_cache1,
crossattn_cache=pipeline.crossattn_cache,
current_start=current_start_frame * pipeline.frame_seq_length,
)
# Decode to pixels
if args.trt:
pixels, vae_cache = pipeline.vae.forward(denoised_pred.half(), *vae_cache)
elif APP_STATE["current_use_taehv"]:
if latents_cache is None:
latents_cache = denoised_pred
else:
denoised_pred = torch.cat([latents_cache, denoised_pred], dim=1)
latents_cache = denoised_pred[:, -3:]
pixels = pipeline.vae.decode(denoised_pred)
else:
pixels, vae_cache = pipeline.vae(denoised_pred.half(), *vae_cache)
# Handle frame skipping for first block
if idx == 0 and not args.trt:
pixels = pixels[:, 3:]
elif APP_STATE["current_use_taehv"] and idx > 0:
pixels = pixels[:, 12:]
print(f"๐น Decoded pixels shape: {pixels.shape}")
# Calculate actual frames that will be yielded for this block
actual_frames_this_block = pixels.shape[1]
# Yield individual frames with timing delays
for frame_idx in range(actual_frames_this_block):
frame_tensor = pixels[0, frame_idx] # Get single frame [C, H, W]
# Normalize from [-1, 1] to [0, 255]
frame_np = torch.clamp(frame_tensor.float(), -1., 1.) * 127.5 + 127.5
frame_np = frame_np.to(torch.uint8).cpu().numpy()
# Convert from CHW to HWC format (RGB)
frame_np = np.transpose(frame_np, (1, 2, 0)) # CHW -> HWC
all_frames_for_video.append(frame_np)
total_frames_yielded += 1
# Calculate progress based on blocks completed + current block progress
blocks_completed = idx
current_block_progress = (frame_idx + 1) / actual_frames_this_block
total_block_progress = (blocks_completed + current_block_progress) / num_blocks
frame_progress_percent = total_block_progress * 100
# Cap at 100% to avoid going over
frame_progress_percent = min(frame_progress_percent, 100.0)
print(f"๐บ Yielding frame {total_frames_yielded}: shape {frame_np.shape}")
# Create HTML status update
if frame_idx == actual_frames_this_block - 1 and idx + 1 == num_blocks: # Last frame
status_html = (
f"<div style='padding: 16px; border: 1px solid #198754; background-color: #d1e7dd; border-radius: 8px; font-family: sans-serif; text-align: center;'>"
f" <h4 style='margin: 0 0 8px 0; color: #0f5132; font-size: 18px;'>๐ Generation Complete!</h4>"
f" <p style='margin: 0; color: #0f5132;'>"
f" Total frames: {total_frames_yielded}. The final video is now available."
f" </p>"
f"</div>"
)
else: # Regular frames
status_html = (
f"<div style='padding: 10px; border: 1px solid #ddd; border-radius: 8px; font-family: sans-serif;'>"
f" <p style='margin: 0 0 8px 0; font-size: 16px; font-weight: bold;'>Generating Video...</p>"
f" <div style='background: #e9ecef; border-radius: 4px; width: 100%; overflow: hidden;'>"
f" <div style='width: {frame_progress_percent:.1f}%; height: 20px; background-color: #0d6efd; transition: width 0.2s;'></div>"
f" </div>"
f" <p style='margin: 8px 0 0 0; color: #555; font-size: 14px; text-align: right;'>"
f" Block {idx+1}/{num_blocks} | Frame {total_frames_yielded} | {frame_progress_percent:.1f}%"
f" </p>"
f"</div>"
)
# Yield frame with a small delay to ensure UI updates
yield gr.update(visible=True, value=frame_np), gr.update(visible=False), status_html
# Sleep between frames for smooth playback (except for the last frame)
# Add minimum delay to ensure UI can update
if not (frame_idx == actual_frames_this_block - 1 and idx + 1 == num_blocks):
time.sleep(max(frame_delay, 0.1)) # Minimum 100ms delay
current_start_frame += current_num_frames
print(f"โ
Video generation completed! Total frames yielded: {total_frames_yielded}")
# Save final video
try:
video_path = f"gradio_tmp/{seed}_{hashlib.md5(prompt.encode()).hexdigest()}.mp4"
imageio.mimwrite(video_path, all_frames_for_video, fps=fps, quality=8)
print(f"โ
Video saved to {video_path}")
final_status_html = (
f"<div style='padding: 16px; border: 1px solid #198754; background-color: #d1e7dd; border-radius: 8px; font-family: sans-serif; text-align: center;'>"
f" <h4 style='margin: 0 0 8px 0; color: #0f5132; font-size: 18px;'>๐ Generation Complete!</h4>"
f" <p style='margin: 0; color: #0f5132;'>"
f" Video saved successfully with {total_frames_yielded} frames at {fps} FPS."
f" </p>"
f"</div>"
)
yield gr.update(visible=False), gr.update(value=video_path, visible=True), final_status_html
except Exception as e:
print(f"โ ๏ธ Could not save final video: {e}")
error_status_html = (
f"<div style='padding: 16px; border: 1px solid #dc3545; background-color: #f8d7da; border-radius: 8px; font-family: sans-serif; text-align: center;'>"
f" <h4 style='margin: 0 0 8px 0; color: #721c24; font-size: 18px;'>โ ๏ธ Video Save Error</h4>"
f" <p style='margin: 0; color: #721c24;'>"
f" Could not save final video: {str(e)}"
f" </p>"
f"</div>"
)
yield None, None, error_status_html
# --- Gradio UI Layout ---
with gr.Blocks(title="Self-Forcing Frame Streaming Demo") as demo:
gr.Markdown("# ๐ Self-Forcing Video Generation with Frame Streaming")
gr.Markdown("Real-time video generation with frame-by-frame display. [[Model]](https://huggingface.co/gdhe17/Self-Forcing), [[Project page]](https://self-forcing.github.io), [[Paper]](https://huggingface.co/papers/2506.08009)")
with gr.Row():
with gr.Column(scale=2):
gr.Markdown("### ๐ Configure Generation")
with gr.Group():
prompt = gr.Textbox(
label="Prompt",
placeholder="A stylish woman walks down a Tokyo street...",
lines=4,
)
gr.Examples(
examples=[
"A close-up shot of a ceramic teacup slowly pouring water into a glass mug. The water flows smoothly from the spout of the teacup into the mug, creating gentle ripples as it fills up. Both cups have detailed textures, with the teacup having a matte finish and the glass mug showcasing clear transparency. The background is a blurred kitchen countertop, adding context without distracting from the central action. The pouring motion is fluid and natural, emphasizing the interaction between the two cups.",
"A playful capybara is seen playing an electronic guitar, strumming the strings with its front paws. The raccoon has distinctive black facial markings and a bushy tail. It sits comfortably on a small stool, its body slightly tilted as it focuses intently on the instrument. The setting is a cozy, dimly lit room with vintage posters on the walls, adding a retro vibe. The raccoon's expressive eyes convey a sense of joy and concentration. Medium close-up shot, focusing on the raccoon's face and hands interacting with the guitar.",
"A dynamic over-the-shoulder perspective of a chef meticulously plating a dish in a bustling kitchen. The chef, a middle-aged man with a neatly trimmed beard and focused expression, deftly arranges ingredients on a pristine white plate. His hands move with precision, each gesture deliberate and practiced. The background shows a crowded kitchen with steaming pots, whirring blenders, and the clatter of utensils. Bright lights highlight the scene, casting shadows across the busy workspace. The camera angle captures the chef's detailed work from behind, emphasizing his skill and dedication.",
],
inputs=[prompt],
fn=video_generation_handler,
outputs=[frame_display, final_video, status_html],
cache_examples="lazy"
)
with gr.Row():
seed = gr.Number(label="Seed", value=-1, info="Use -1 for a random seed.")
fps = gr.Slider(
label="Playback FPS",
minimum=1,
maximum=30,
value=args.fps,
step=1,
visible=False,
info="Frames per second for playback"
)
start_btn = gr.Button("๐ฌ Start Generation", variant="primary", size="lg")
with gr.Column(scale=3):
gr.Markdown("### ๐บ Live Frame Stream")
gr.Markdown("*Click 'Start Generation' to begin frame streaming*")
frame_display = gr.Image(
label="Generated Frames",
height=480,
width=832,
show_label=True,
container=True
)
final_video = gr.Video(
label="Final Rendered Video",
visible=False,
interactive=False,
height=400,
autoplay=True
)
status_html = gr.HTML(
value="<div style='text-align: center; padding: 20px; color: #666;'>Ready to start generation...</div>",
label="Generation Status"
)
# Connect the generator to the image display
start_btn.click(
fn=video_generation_handler,
inputs=[prompt, seed, fps],
outputs=[frame_display, final_video, status_html]
)
# --- Launch App ---
if __name__ == "__main__":
if os.path.exists("gradio_tmp"):
import shutil
shutil.rmtree("gradio_tmp")
os.makedirs("gradio_tmp", exist_ok=True)
demo.queue().launch(
server_name=args.host,
server_port=args.port,
share=args.share,
show_error=True
) |