Spaces:
Running
on
Zero
Running
on
Zero
import subprocess | |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
from huggingface_hub import snapshot_download, hf_hub_download | |
snapshot_download( | |
repo_id="Wan-AI/Wan2.1-T2V-1.3B", | |
local_dir="wan_models/Wan2.1-T2V-1.3B", | |
local_dir_use_symlinks=False, | |
resume_download=True, | |
repo_type="model" | |
) | |
hf_hub_download( | |
repo_id="gdhe17/Self-Forcing", | |
filename="checkpoints/self_forcing_dmd.pt", | |
local_dir=".", | |
local_dir_use_symlinks=False | |
) | |
import os | |
import re | |
import random | |
import argparse | |
import hashlib | |
import urllib.request | |
import time | |
from PIL import Image | |
import spaces | |
import numpy as np | |
import torch | |
import gradio as gr | |
from omegaconf import OmegaConf | |
from tqdm import tqdm | |
import imageio | |
# Original project imports | |
from pipeline import CausalInferencePipeline | |
from demo_utils.constant import ZERO_VAE_CACHE | |
from demo_utils.vae_block3 import VAEDecoderWrapper | |
from utils.wan_wrapper import WanDiffusionWrapper, WanTextEncoder | |
# --- Argument Parsing --- | |
parser = argparse.ArgumentParser(description="Gradio Demo for Self-Forcing with Frame Streaming") | |
parser.add_argument('--port', type=int, default=7860, help="Port to run the Gradio app on.") | |
parser.add_argument('--host', type=str, default='0.0.0.0', help="Host to bind the Gradio app to.") | |
parser.add_argument("--checkpoint_path", type=str, default='./checkpoints/self_forcing_dmd.pt', help="Path to the model checkpoint.") | |
parser.add_argument("--config_path", type=str, default='./configs/self_forcing_dmd.yaml', help="Path to the model config.") | |
parser.add_argument('--share', action='store_true', help="Create a public Gradio link.") | |
parser.add_argument('--trt', action='store_true', help="Use TensorRT optimized VAE decoder.") | |
parser.add_argument('--fps', type=float, default=15.0, help="Playback FPS for frame streaming.") | |
args = parser.parse_args() | |
gpu = "cuda" | |
try: | |
config = OmegaConf.load(args.config_path) | |
default_config = OmegaConf.load("configs/default_config.yaml") | |
config = OmegaConf.merge(default_config, config) | |
except FileNotFoundError as e: | |
print(f"Error loading config file: {e}\n. Please ensure config files are in the correct path.") | |
exit(1) | |
# Initialize Models | |
print("Initializing models...") | |
text_encoder = WanTextEncoder() | |
transformer = WanDiffusionWrapper(is_causal=True) | |
try: | |
state_dict = torch.load(args.checkpoint_path, map_location="cpu") | |
transformer.load_state_dict(state_dict.get('generator_ema', state_dict.get('generator'))) | |
except FileNotFoundError as e: | |
print(f"Error loading checkpoint: {e}\nPlease ensure the checkpoint '{args.checkpoint_path}' exists.") | |
exit(1) | |
text_encoder.eval().to(dtype=torch.float16).requires_grad_(False) | |
transformer.eval().to(dtype=torch.float16).requires_grad_(False) | |
text_encoder.to(gpu) | |
transformer.to(gpu) | |
APP_STATE = { | |
"torch_compile_applied": False, | |
"fp8_applied": False, | |
"current_use_taehv": False, | |
"current_vae_decoder": None, | |
} | |
def initialize_vae_decoder(use_taehv=False, use_trt=False): | |
if use_trt: | |
from demo_utils.vae import VAETRTWrapper | |
print("Initializing TensorRT VAE Decoder...") | |
vae_decoder = VAETRTWrapper() | |
APP_STATE["current_use_taehv"] = False | |
elif use_taehv: | |
print("Initializing TAEHV VAE Decoder...") | |
from demo_utils.taehv import TAEHV | |
taehv_checkpoint_path = "checkpoints/taew2_1.pth" | |
if not os.path.exists(taehv_checkpoint_path): | |
print(f"Downloading TAEHV checkpoint to {taehv_checkpoint_path}...") | |
os.makedirs("checkpoints", exist_ok=True) | |
download_url = "https://github.com/madebyollin/taehv/raw/main/taew2_1.pth" | |
try: | |
urllib.request.urlretrieve(download_url, taehv_checkpoint_path) | |
except Exception as e: | |
raise RuntimeError(f"Failed to download taew2_1.pth: {e}") | |
class DotDict(dict): __getattr__ = dict.get | |
class TAEHVDiffusersWrapper(torch.nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.dtype = torch.float16 | |
self.taehv = TAEHV(checkpoint_path=taehv_checkpoint_path).to(self.dtype) | |
self.config = DotDict(scaling_factor=1.0) | |
def decode(self, latents, return_dict=None): | |
return self.taehv.decode_video(latents, parallel=not LOW_MEMORY).mul_(2).sub_(1) | |
vae_decoder = TAEHVDiffusersWrapper() | |
APP_STATE["current_use_taehv"] = True | |
else: | |
print("Initializing Default VAE Decoder...") | |
vae_decoder = VAEDecoderWrapper() | |
try: | |
vae_state_dict = torch.load('wan_models/Wan2.1-T2V-1.3B/Wan2.1_VAE.pth', map_location="cpu") | |
decoder_state_dict = {k: v for k, v in vae_state_dict.items() if 'decoder.' in k or 'conv2' in k} | |
vae_decoder.load_state_dict(decoder_state_dict) | |
except FileNotFoundError: | |
print("Warning: Default VAE weights not found.") | |
APP_STATE["current_use_taehv"] = False | |
vae_decoder.eval().to(dtype=torch.float16).requires_grad_(False).to(gpu) | |
APP_STATE["current_vae_decoder"] = vae_decoder | |
print(f"✅ VAE decoder initialized: {'TAEHV' if use_taehv else 'Default VAE'}") | |
# Initialize with default VAE | |
initialize_vae_decoder(use_taehv=False, use_trt=args.trt) | |
pipeline = CausalInferencePipeline( | |
config, device=gpu, generator=transformer, text_encoder=text_encoder, | |
vae=APP_STATE["current_vae_decoder"] | |
) | |
pipeline.to(dtype=torch.float16).to(gpu) | |
# --- Frame Streaming Video Generation Handler --- | |
def video_generation_handler(prompt, seed, fps): | |
""" | |
Generator function that yields RGB frames for display in gr.Image. | |
Includes timing delays for smooth playback. | |
""" | |
if seed == -1: | |
seed = random.randint(0, 2**32 - 1) | |
print(f"🎬 Starting video generation with prompt: '{prompt}' and seed: {seed}") | |
# Calculate frame delay based on FPS | |
frame_delay = 1.0 / fps if fps > 0 else 1.0 / 15.0 | |
print("🔤 Encoding text prompt...") | |
conditional_dict = text_encoder(text_prompts=[prompt]) | |
for key, value in conditional_dict.items(): | |
conditional_dict[key] = value.to(dtype=torch.float16) | |
# --- Generation Loop --- | |
rnd = torch.Generator(gpu).manual_seed(int(seed)) | |
pipeline._initialize_kv_cache(1, torch.float16, device=gpu) | |
pipeline._initialize_crossattn_cache(1, torch.float16, device=gpu) | |
noise = torch.randn([1, 21, 16, 60, 104], device=gpu, dtype=torch.float16, generator=rnd) | |
vae_cache, latents_cache = None, None | |
if not APP_STATE["current_use_taehv"] and not args.trt: | |
vae_cache = [c.to(device=gpu, dtype=torch.float16) for c in ZERO_VAE_CACHE] | |
num_blocks = 7 | |
current_start_frame = 0 | |
all_num_frames = [pipeline.num_frame_per_block] * num_blocks | |
total_frames_yielded = 0 | |
all_frames_for_video = [] | |
for idx, current_num_frames in enumerate(all_num_frames): | |
print(f"📦 Processing block {idx+1}/{num_blocks} with {current_num_frames} frames") | |
noisy_input = noise[:, current_start_frame : current_start_frame + current_num_frames] | |
for step_idx, current_timestep in enumerate(pipeline.denoising_step_list): | |
timestep = torch.ones([1, current_num_frames], device=noise.device, dtype=torch.int64) * current_timestep | |
_, denoised_pred = pipeline.generator( | |
noisy_image_or_video=noisy_input, conditional_dict=conditional_dict, | |
timestep=timestep, kv_cache=pipeline.kv_cache1, | |
crossattn_cache=pipeline.crossattn_cache, | |
current_start=current_start_frame * pipeline.frame_seq_length | |
) | |
if step_idx < len(pipeline.denoising_step_list) - 1: | |
next_timestep = pipeline.denoising_step_list[step_idx + 1] | |
noisy_input = pipeline.scheduler.add_noise( | |
denoised_pred.flatten(0, 1), torch.randn_like(denoised_pred.flatten(0, 1)), | |
next_timestep * torch.ones([1 * current_num_frames], device=noise.device, dtype=torch.long) | |
).unflatten(0, denoised_pred.shape[:2]) | |
if idx < len(all_num_frames) - 1: | |
pipeline.generator( | |
noisy_image_or_video=denoised_pred, conditional_dict=conditional_dict, | |
timestep=torch.zeros_like(timestep), kv_cache=pipeline.kv_cache1, | |
crossattn_cache=pipeline.crossattn_cache, | |
current_start=current_start_frame * pipeline.frame_seq_length, | |
) | |
# Decode to pixels | |
if args.trt: | |
pixels, vae_cache = pipeline.vae.forward(denoised_pred.half(), *vae_cache) | |
elif APP_STATE["current_use_taehv"]: | |
if latents_cache is None: | |
latents_cache = denoised_pred | |
else: | |
denoised_pred = torch.cat([latents_cache, denoised_pred], dim=1) | |
latents_cache = denoised_pred[:, -3:] | |
pixels = pipeline.vae.decode(denoised_pred) | |
else: | |
pixels, vae_cache = pipeline.vae(denoised_pred.half(), *vae_cache) | |
# Handle frame skipping for first block | |
if idx == 0 and not args.trt: | |
pixels = pixels[:, 3:] | |
elif APP_STATE["current_use_taehv"] and idx > 0: | |
pixels = pixels[:, 12:] | |
print(f"📹 Decoded pixels shape: {pixels.shape}") | |
# Calculate actual frames that will be yielded for this block | |
actual_frames_this_block = pixels.shape[1] | |
# Yield individual frames with timing delays | |
for frame_idx in range(actual_frames_this_block): | |
frame_tensor = pixels[0, frame_idx] # Get single frame [C, H, W] | |
# Normalize from [-1, 1] to [0, 255] | |
frame_np = torch.clamp(frame_tensor.float(), -1., 1.) * 127.5 + 127.5 | |
frame_np = frame_np.to(torch.uint8).cpu().numpy() | |
# Convert from CHW to HWC format (RGB) | |
frame_np = np.transpose(frame_np, (1, 2, 0)) # CHW -> HWC | |
all_frames_for_video.append(frame_np) | |
total_frames_yielded += 1 | |
# Calculate progress based on blocks completed + current block progress | |
blocks_completed = idx | |
current_block_progress = (frame_idx + 1) / actual_frames_this_block | |
total_block_progress = (blocks_completed + current_block_progress) / num_blocks | |
frame_progress_percent = total_block_progress * 100 | |
# Cap at 100% to avoid going over | |
frame_progress_percent = min(frame_progress_percent, 100.0) | |
print(f"📺 Yielding frame {total_frames_yielded}: shape {frame_np.shape}") | |
# Create HTML status update | |
if frame_idx == actual_frames_this_block - 1 and idx + 1 == num_blocks: # Last frame | |
status_html = ( | |
f"<div style='padding: 16px; border: 1px solid #198754; background-color: #d1e7dd; border-radius: 8px; font-family: sans-serif; text-align: center;'>" | |
f" <h4 style='margin: 0 0 8px 0; color: #0f5132; font-size: 18px;'>🎉 Generation Complete!</h4>" | |
f" <p style='margin: 0; color: #0f5132;'>" | |
f" Total frames: {total_frames_yielded}. The final video is now available." | |
f" </p>" | |
f"</div>" | |
) | |
else: # Regular frames | |
status_html = ( | |
f"<div style='padding: 10px; border: 1px solid #ddd; border-radius: 8px; font-family: sans-serif;'>" | |
f" <p style='margin: 0 0 8px 0; font-size: 16px; font-weight: bold;'>Generating Video...</p>" | |
f" <div style='background: #e9ecef; border-radius: 4px; width: 100%; overflow: hidden;'>" | |
f" <div style='width: {frame_progress_percent:.1f}%; height: 20px; background-color: #0d6efd; transition: width 0.2s;'></div>" | |
f" </div>" | |
f" <p style='margin: 8px 0 0 0; color: #555; font-size: 14px; text-align: right;'>" | |
f" Block {idx+1}/{num_blocks} | Frame {total_frames_yielded} | {frame_progress_percent:.1f}%" | |
f" </p>" | |
f"</div>" | |
) | |
# Yield frame with a small delay to ensure UI updates | |
yield gr.update(visible=True, value=frame_np), gr.update(visible=False), status_html | |
# Sleep between frames for smooth playback (except for the last frame) | |
# Add minimum delay to ensure UI can update | |
if not (frame_idx == actual_frames_this_block - 1 and idx + 1 == num_blocks): | |
time.sleep(max(frame_delay, 0.1)) # Minimum 100ms delay | |
current_start_frame += current_num_frames | |
print(f"✅ Video generation completed! Total frames yielded: {total_frames_yielded}") | |
# Save final video | |
try: | |
video_path = f"gradio_tmp/{seed}_{hashlib.md5(prompt.encode()).hexdigest()}.mp4" | |
imageio.mimwrite(video_path, all_frames_for_video, fps=fps, quality=8) | |
print(f"✅ Video saved to {video_path}") | |
final_status_html = ( | |
f"<div style='padding: 16px; border: 1px solid #198754; background-color: #d1e7dd; border-radius: 8px; font-family: sans-serif; text-align: center;'>" | |
f" <h4 style='margin: 0 0 8px 0; color: #0f5132; font-size: 18px;'>🎉 Generation Complete!</h4>" | |
f" <p style='margin: 0; color: #0f5132;'>" | |
f" Video saved successfully with {total_frames_yielded} frames at {fps} FPS." | |
f" </p>" | |
f"</div>" | |
) | |
yield gr.update(visible=False), gr.update(value=video_path, visible=True), final_status_html | |
except Exception as e: | |
print(f"⚠️ Could not save final video: {e}") | |
error_status_html = ( | |
f"<div style='padding: 16px; border: 1px solid #dc3545; background-color: #f8d7da; border-radius: 8px; font-family: sans-serif; text-align: center;'>" | |
f" <h4 style='margin: 0 0 8px 0; color: #721c24; font-size: 18px;'>⚠️ Video Save Error</h4>" | |
f" <p style='margin: 0; color: #721c24;'>" | |
f" Could not save final video: {str(e)}" | |
f" </p>" | |
f"</div>" | |
) | |
yield None, None, error_status_html | |
# --- Gradio UI Layout --- | |
with gr.Blocks(theme=gr.themes.Soft(), title="Self-Forcing Frame Streaming Demo") as demo: | |
gr.Markdown("# 🚀 Self-Forcing Video Generation with Frame Streaming") | |
gr.Markdown("*Real-time video generation with frame-by-frame display*") | |
with gr.Row(): | |
with gr.Column(scale=2): | |
gr.Markdown("### 📝 Configure Generation") | |
with gr.Group(): | |
prompt = gr.Textbox( | |
label="Prompt", | |
placeholder="A stylish woman walks down a Tokyo street...", | |
lines=4, | |
value="A stylish woman walks down a Tokyo street filled with warm glowing neon and animated city signage." | |
) | |
gr.Examples( | |
examples=[ | |
"A stylish woman walks down a Tokyo street filled with warm glowing neon and animated city signage. She wears a black leather jacket, a long red dress, and black boots, and carries a black purse.", | |
"A white and orange tabby cat is seen happily darting through a dense garden, as if chasing something. Its eyes are wide and happy as it jogs forward, scanning the branches, flowers, and leaves.", | |
"A drone shot of a surfer riding a wave on a sunny day. The camera follows the surfer as they carve through the water.", | |
], | |
inputs=[prompt] | |
) | |
with gr.Row(): | |
seed = gr.Number(label="Seed", value=-1, info="Use -1 for a random seed.") | |
fps = gr.Slider( | |
label="Playback FPS", | |
minimum=1, | |
maximum=30, | |
value=args.fps, | |
step=1, | |
info="Frames per second for playback" | |
) | |
start_btn = gr.Button("🎬 Start Generation", variant="primary", size="lg") | |
with gr.Column(scale=3): | |
gr.Markdown("### 📺 Live Frame Stream") | |
gr.Markdown("*Click 'Start Generation' to begin frame streaming*") | |
frame_display = gr.Image( | |
label="Generated Frames", | |
height=480, | |
width=832, | |
show_label=True, | |
container=True | |
) | |
final_video = gr.Video( | |
label="Final Rendered Video", | |
visible=False, | |
interactive=False, | |
height=400, | |
autoplay=True | |
) | |
status_html = gr.HTML( | |
value="<div style='text-align: center; padding: 20px; color: #666;'>Ready to start generation...</div>", | |
label="Generation Status" | |
) | |
# Connect the generator to the image display | |
start_btn.click( | |
fn=video_generation_handler, | |
inputs=[prompt, seed, fps], | |
outputs=[frame_display, final_video, status_html] | |
) | |
# --- Launch App --- | |
if __name__ == "__main__": | |
if os.path.exists("gradio_tmp"): | |
import shutil | |
shutil.rmtree("gradio_tmp") | |
os.makedirs("gradio_tmp", exist_ok=True) | |
demo.queue().launch( | |
server_name=args.host, | |
server_port=args.port, | |
share=args.share, | |
show_error=True | |
) |