self-forcing / trainer /diffusion.py
multimodalart's picture
Upload 80 files
0fd2f06 verified
import gc
import logging
from model import CausalDiffusion
from utils.dataset import ShardingLMDBDataset, cycle
from utils.misc import set_seed
import torch.distributed as dist
from omegaconf import OmegaConf
import torch
import wandb
import time
import os
from utils.distributed import EMA_FSDP, barrier, fsdp_wrap, fsdp_state_dict, launch_distributed_job
class Trainer:
def __init__(self, config):
self.config = config
self.step = 0
# Step 1: Initialize the distributed training environment (rank, seed, dtype, logging etc.)
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
launch_distributed_job()
global_rank = dist.get_rank()
self.dtype = torch.bfloat16 if config.mixed_precision else torch.float32
self.device = torch.cuda.current_device()
self.is_main_process = global_rank == 0
self.causal = config.causal
self.disable_wandb = config.disable_wandb
# use a random seed for the training
if config.seed == 0:
random_seed = torch.randint(0, 10000000, (1,), device=self.device)
dist.broadcast(random_seed, src=0)
config.seed = random_seed.item()
set_seed(config.seed + global_rank)
if self.is_main_process and not self.disable_wandb:
wandb.login(host=config.wandb_host, key=config.wandb_key)
wandb.init(
config=OmegaConf.to_container(config, resolve=True),
name=config.config_name,
mode="online",
entity=config.wandb_entity,
project=config.wandb_project,
dir=config.wandb_save_dir
)
self.output_path = config.logdir
# Step 2: Initialize the model and optimizer
self.model = CausalDiffusion(config, device=self.device)
self.model.generator = fsdp_wrap(
self.model.generator,
sharding_strategy=config.sharding_strategy,
mixed_precision=config.mixed_precision,
wrap_strategy=config.generator_fsdp_wrap_strategy
)
self.model.text_encoder = fsdp_wrap(
self.model.text_encoder,
sharding_strategy=config.sharding_strategy,
mixed_precision=config.mixed_precision,
wrap_strategy=config.text_encoder_fsdp_wrap_strategy
)
if not config.no_visualize or config.load_raw_video:
self.model.vae = self.model.vae.to(
device=self.device, dtype=torch.bfloat16 if config.mixed_precision else torch.float32)
self.generator_optimizer = torch.optim.AdamW(
[param for param in self.model.generator.parameters()
if param.requires_grad],
lr=config.lr,
betas=(config.beta1, config.beta2),
weight_decay=config.weight_decay
)
# Step 3: Initialize the dataloader
dataset = ShardingLMDBDataset(config.data_path, max_pair=int(1e8))
sampler = torch.utils.data.distributed.DistributedSampler(
dataset, shuffle=True, drop_last=True)
dataloader = torch.utils.data.DataLoader(
dataset,
batch_size=config.batch_size,
sampler=sampler,
num_workers=8)
if dist.get_rank() == 0:
print("DATASET SIZE %d" % len(dataset))
self.dataloader = cycle(dataloader)
##############################################################################################################
# 6. Set up EMA parameter containers
rename_param = (
lambda name: name.replace("_fsdp_wrapped_module.", "")
.replace("_checkpoint_wrapped_module.", "")
.replace("_orig_mod.", "")
)
self.name_to_trainable_params = {}
for n, p in self.model.generator.named_parameters():
if not p.requires_grad:
continue
renamed_n = rename_param(n)
self.name_to_trainable_params[renamed_n] = p
ema_weight = config.ema_weight
self.generator_ema = None
if (ema_weight is not None) and (ema_weight > 0.0):
print(f"Setting up EMA with weight {ema_weight}")
self.generator_ema = EMA_FSDP(self.model.generator, decay=ema_weight)
##############################################################################################################
# 7. (If resuming) Load the model and optimizer, lr_scheduler, ema's statedicts
if getattr(config, "generator_ckpt", False):
print(f"Loading pretrained generator from {config.generator_ckpt}")
state_dict = torch.load(config.generator_ckpt, map_location="cpu")
if "generator" in state_dict:
state_dict = state_dict["generator"]
elif "model" in state_dict:
state_dict = state_dict["model"]
self.model.generator.load_state_dict(
state_dict, strict=True
)
##############################################################################################################
# Let's delete EMA params for early steps to save some computes at training and inference
if self.step < config.ema_start_step:
self.generator_ema = None
self.max_grad_norm = 10.0
self.previous_time = None
def save(self):
print("Start gathering distributed model states...")
generator_state_dict = fsdp_state_dict(
self.model.generator)
if self.config.ema_start_step < self.step:
state_dict = {
"generator": generator_state_dict,
"generator_ema": self.generator_ema.state_dict(),
}
else:
state_dict = {
"generator": generator_state_dict,
}
if self.is_main_process:
os.makedirs(os.path.join(self.output_path,
f"checkpoint_model_{self.step:06d}"), exist_ok=True)
torch.save(state_dict, os.path.join(self.output_path,
f"checkpoint_model_{self.step:06d}", "model.pt"))
print("Model saved to", os.path.join(self.output_path,
f"checkpoint_model_{self.step:06d}", "model.pt"))
def train_one_step(self, batch):
self.log_iters = 1
if self.step % 20 == 0:
torch.cuda.empty_cache()
# Step 1: Get the next batch of text prompts
text_prompts = batch["prompts"]
if not self.config.load_raw_video: # precomputed latent
clean_latent = batch["ode_latent"][:, -1].to(
device=self.device, dtype=self.dtype)
else: # encode raw video to latent
frames = batch["frames"].to(
device=self.device, dtype=self.dtype)
with torch.no_grad():
clean_latent = self.model.vae.encode_to_latent(
frames).to(device=self.device, dtype=self.dtype)
image_latent = clean_latent[:, 0:1, ]
batch_size = len(text_prompts)
image_or_video_shape = list(self.config.image_or_video_shape)
image_or_video_shape[0] = batch_size
# Step 2: Extract the conditional infos
with torch.no_grad():
conditional_dict = self.model.text_encoder(
text_prompts=text_prompts)
if not getattr(self, "unconditional_dict", None):
unconditional_dict = self.model.text_encoder(
text_prompts=[self.config.negative_prompt] * batch_size)
unconditional_dict = {k: v.detach()
for k, v in unconditional_dict.items()}
self.unconditional_dict = unconditional_dict # cache the unconditional_dict
else:
unconditional_dict = self.unconditional_dict
# Step 3: Train the generator
generator_loss, log_dict = self.model.generator_loss(
image_or_video_shape=image_or_video_shape,
conditional_dict=conditional_dict,
unconditional_dict=unconditional_dict,
clean_latent=clean_latent,
initial_latent=image_latent
)
self.generator_optimizer.zero_grad()
generator_loss.backward()
generator_grad_norm = self.model.generator.clip_grad_norm_(
self.max_grad_norm)
self.generator_optimizer.step()
# Increment the step since we finished gradient update
self.step += 1
wandb_loss_dict = {
"generator_loss": generator_loss.item(),
"generator_grad_norm": generator_grad_norm.item(),
}
# Step 4: Logging
if self.is_main_process:
if not self.disable_wandb:
wandb.log(wandb_loss_dict, step=self.step)
if self.step % self.config.gc_interval == 0:
if dist.get_rank() == 0:
logging.info("DistGarbageCollector: Running GC.")
gc.collect()
# Step 5. Create EMA params
# TODO: Implement EMA
def generate_video(self, pipeline, prompts, image=None):
batch_size = len(prompts)
sampled_noise = torch.randn(
[batch_size, 21, 16, 60, 104], device="cuda", dtype=self.dtype
)
video, _ = pipeline.inference(
noise=sampled_noise,
text_prompts=prompts,
return_latents=True
)
current_video = video.permute(0, 1, 3, 4, 2).cpu().numpy() * 255.0
return current_video
def train(self):
while True:
batch = next(self.dataloader)
self.train_one_step(batch)
if (not self.config.no_save) and self.step % self.config.log_iters == 0:
torch.cuda.empty_cache()
self.save()
torch.cuda.empty_cache()
barrier()
if self.is_main_process:
current_time = time.time()
if self.previous_time is None:
self.previous_time = current_time
else:
if not self.disable_wandb:
wandb.log({"per iteration time": current_time - self.previous_time}, step=self.step)
self.previous_time = current_time