Spaces:
Running
on
Zero
Running
on
Zero
import gc | |
import logging | |
from utils.dataset import ShardingLMDBDataset, cycle | |
from utils.distributed import EMA_FSDP, fsdp_wrap, fsdp_state_dict, launch_distributed_job | |
from utils.misc import ( | |
set_seed, | |
merge_dict_list | |
) | |
import torch.distributed as dist | |
from omegaconf import OmegaConf | |
from model import GAN | |
import torch | |
import wandb | |
import time | |
import os | |
class Trainer: | |
def __init__(self, config): | |
self.config = config | |
self.step = 0 | |
# Step 1: Initialize the distributed training environment (rank, seed, dtype, logging etc.) | |
torch.backends.cuda.matmul.allow_tf32 = True | |
torch.backends.cudnn.allow_tf32 = True | |
launch_distributed_job() | |
global_rank = dist.get_rank() | |
self.world_size = dist.get_world_size() | |
self.dtype = torch.bfloat16 if config.mixed_precision else torch.float32 | |
self.device = torch.cuda.current_device() | |
self.is_main_process = global_rank == 0 | |
self.causal = config.causal | |
self.disable_wandb = config.disable_wandb | |
# Configuration for discriminator warmup | |
self.discriminator_warmup_steps = getattr(config, "discriminator_warmup_steps", 0) | |
self.in_discriminator_warmup = self.step < self.discriminator_warmup_steps | |
if self.in_discriminator_warmup and self.is_main_process: | |
print(f"Starting with discriminator warmup for {self.discriminator_warmup_steps} steps") | |
self.loss_scale = getattr(config, "loss_scale", 1.0) | |
# use a random seed for the training | |
if config.seed == 0: | |
random_seed = torch.randint(0, 10000000, (1,), device=self.device) | |
dist.broadcast(random_seed, src=0) | |
config.seed = random_seed.item() | |
set_seed(config.seed + global_rank) | |
if self.is_main_process and not self.disable_wandb: | |
wandb.login(host=config.wandb_host, key=config.wandb_key) | |
wandb.init( | |
config=OmegaConf.to_container(config, resolve=True), | |
name=config.config_name, | |
mode="online", | |
entity=config.wandb_entity, | |
project=config.wandb_project, | |
dir=config.wandb_save_dir | |
) | |
self.output_path = config.logdir | |
# Step 2: Initialize the model and optimizer | |
self.model = GAN(config, device=self.device) | |
self.model.generator = fsdp_wrap( | |
self.model.generator, | |
sharding_strategy=config.sharding_strategy, | |
mixed_precision=config.mixed_precision, | |
wrap_strategy=config.generator_fsdp_wrap_strategy | |
) | |
self.model.fake_score = fsdp_wrap( | |
self.model.fake_score, | |
sharding_strategy=config.sharding_strategy, | |
mixed_precision=config.mixed_precision, | |
wrap_strategy=config.fake_score_fsdp_wrap_strategy | |
) | |
self.model.text_encoder = fsdp_wrap( | |
self.model.text_encoder, | |
sharding_strategy=config.sharding_strategy, | |
mixed_precision=config.mixed_precision, | |
wrap_strategy=config.text_encoder_fsdp_wrap_strategy, | |
cpu_offload=getattr(config, "text_encoder_cpu_offload", False) | |
) | |
if not config.no_visualize or config.load_raw_video: | |
self.model.vae = self.model.vae.to( | |
device=self.device, dtype=torch.bfloat16 if config.mixed_precision else torch.float32) | |
self.generator_optimizer = torch.optim.AdamW( | |
[param for param in self.model.generator.parameters() | |
if param.requires_grad], | |
lr=config.gen_lr, | |
betas=(config.beta1, config.beta2) | |
) | |
# Create separate parameter groups for the fake_score network | |
# One group for parameters with "_cls_pred_branch" or "_gan_ca_blocks" in the name | |
# and another group for all other parameters | |
fake_score_params = [] | |
discriminator_params = [] | |
for name, param in self.model.fake_score.named_parameters(): | |
if param.requires_grad: | |
if "_cls_pred_branch" in name or "_gan_ca_blocks" in name: | |
discriminator_params.append(param) | |
else: | |
fake_score_params.append(param) | |
# Use the special learning rate for the special parameter group | |
# and the default critic learning rate for other parameters | |
self.critic_param_groups = [ | |
{'params': fake_score_params, 'lr': config.critic_lr}, | |
{'params': discriminator_params, 'lr': config.critic_lr * config.discriminator_lr_multiplier} | |
] | |
if self.in_discriminator_warmup: | |
self.critic_optimizer = torch.optim.AdamW( | |
self.critic_param_groups, | |
betas=(0.9, config.beta2_critic) | |
) | |
else: | |
self.critic_optimizer = torch.optim.AdamW( | |
self.critic_param_groups, | |
betas=(config.beta1_critic, config.beta2_critic) | |
) | |
# Step 3: Initialize the dataloader | |
self.data_path = config.data_path | |
dataset = ShardingLMDBDataset(config.data_path, max_pair=int(1e8)) | |
sampler = torch.utils.data.distributed.DistributedSampler( | |
dataset, shuffle=True, drop_last=True) | |
dataloader = torch.utils.data.DataLoader( | |
dataset, | |
batch_size=config.batch_size, | |
sampler=sampler, | |
num_workers=8) | |
if dist.get_rank() == 0: | |
print("DATASET SIZE %d" % len(dataset)) | |
self.dataloader = cycle(dataloader) | |
############################################################################################################## | |
# 6. Set up EMA parameter containers | |
rename_param = ( | |
lambda name: name.replace("_fsdp_wrapped_module.", "") | |
.replace("_checkpoint_wrapped_module.", "") | |
.replace("_orig_mod.", "") | |
) | |
self.name_to_trainable_params = {} | |
for n, p in self.model.generator.named_parameters(): | |
if not p.requires_grad: | |
continue | |
renamed_n = rename_param(n) | |
self.name_to_trainable_params[renamed_n] = p | |
ema_weight = config.ema_weight | |
self.generator_ema = None | |
if (ema_weight is not None) and (ema_weight > 0.0): | |
print(f"Setting up EMA with weight {ema_weight}") | |
self.generator_ema = EMA_FSDP(self.model.generator, decay=ema_weight) | |
############################################################################################################## | |
# 7. (If resuming) Load the model and optimizer, lr_scheduler, ema's statedicts | |
if getattr(config, "generator_ckpt", False): | |
print(f"Loading pretrained generator from {config.generator_ckpt}") | |
state_dict = torch.load(config.generator_ckpt, map_location="cpu") | |
if "generator" in state_dict: | |
state_dict = state_dict["generator"] | |
elif "model" in state_dict: | |
state_dict = state_dict["model"] | |
self.model.generator.load_state_dict( | |
state_dict, strict=True | |
) | |
if hasattr(config, "load"): | |
resume_ckpt_path_critic = os.path.join(config.load, "critic") | |
resume_ckpt_path_generator = os.path.join(config.load, "generator") | |
else: | |
resume_ckpt_path_critic = "none" | |
resume_ckpt_path_generator = "none" | |
_, _ = self.checkpointer_critic.try_best_load( | |
resume_ckpt_path=resume_ckpt_path_critic, | |
) | |
self.step, _ = self.checkpointer_generator.try_best_load( | |
resume_ckpt_path=resume_ckpt_path_generator, | |
force_start_w_ema=config.force_start_w_ema, | |
force_reset_zero_step=config.force_reset_zero_step, | |
force_reinit_ema=config.force_reinit_ema, | |
skip_optimizer_scheduler=config.skip_optimizer_scheduler, | |
) | |
############################################################################################################## | |
# Let's delete EMA params for early steps to save some computes at training and inference | |
if self.step < config.ema_start_step: | |
self.generator_ema = None | |
self.max_grad_norm_generator = getattr(config, "max_grad_norm_generator", 10.0) | |
self.max_grad_norm_critic = getattr(config, "max_grad_norm_critic", 10.0) | |
self.previous_time = None | |
def save(self): | |
print("Start gathering distributed model states...") | |
generator_state_dict = fsdp_state_dict( | |
self.model.generator) | |
critic_state_dict = fsdp_state_dict( | |
self.model.fake_score) | |
if self.config.ema_start_step < self.step: | |
state_dict = { | |
"generator": generator_state_dict, | |
"critic": critic_state_dict, | |
"generator_ema": self.generator_ema.state_dict(), | |
} | |
else: | |
state_dict = { | |
"generator": generator_state_dict, | |
"critic": critic_state_dict, | |
} | |
if self.is_main_process: | |
os.makedirs(os.path.join(self.output_path, | |
f"checkpoint_model_{self.step:06d}"), exist_ok=True) | |
torch.save(state_dict, os.path.join(self.output_path, | |
f"checkpoint_model_{self.step:06d}", "model.pt")) | |
print("Model saved to", os.path.join(self.output_path, | |
f"checkpoint_model_{self.step:06d}", "model.pt")) | |
def fwdbwd_one_step(self, batch, train_generator): | |
self.model.eval() # prevent any randomness (e.g. dropout) | |
if self.step % 20 == 0: | |
torch.cuda.empty_cache() | |
# Step 1: Get the next batch of text prompts | |
text_prompts = batch["prompts"] # next(self.dataloader) | |
if "ode_latent" in batch: | |
clean_latent = batch["ode_latent"][:, -1].to(device=self.device, dtype=self.dtype) | |
else: | |
frames = batch["frames"].to(device=self.device, dtype=self.dtype) | |
with torch.no_grad(): | |
clean_latent = self.model.vae.encode_to_latent( | |
frames).to(device=self.device, dtype=self.dtype) | |
image_latent = clean_latent[:, 0:1, ] | |
batch_size = len(text_prompts) | |
image_or_video_shape = list(self.config.image_or_video_shape) | |
image_or_video_shape[0] = batch_size | |
# Step 2: Extract the conditional infos | |
with torch.no_grad(): | |
conditional_dict = self.model.text_encoder( | |
text_prompts=text_prompts) | |
if not getattr(self, "unconditional_dict", None): | |
unconditional_dict = self.model.text_encoder( | |
text_prompts=[self.config.negative_prompt] * batch_size) | |
unconditional_dict = {k: v.detach() | |
for k, v in unconditional_dict.items()} | |
self.unconditional_dict = unconditional_dict # cache the unconditional_dict | |
else: | |
unconditional_dict = self.unconditional_dict | |
mini_bs, full_bs = ( | |
batch["mini_bs"], | |
batch["full_bs"], | |
) | |
# Step 3: Store gradients for the generator (if training the generator) | |
if train_generator: | |
gan_G_loss = self.model.generator_loss( | |
image_or_video_shape=image_or_video_shape, | |
conditional_dict=conditional_dict, | |
unconditional_dict=unconditional_dict, | |
clean_latent=clean_latent, | |
initial_latent=image_latent if self.config.i2v else None | |
) | |
loss_ratio = mini_bs * self.world_size / full_bs | |
total_loss = gan_G_loss * loss_ratio * self.loss_scale | |
total_loss.backward() | |
generator_grad_norm = self.model.generator.clip_grad_norm_( | |
self.max_grad_norm_generator) | |
generator_log_dict = {"generator_grad_norm": generator_grad_norm, | |
"gan_G_loss": gan_G_loss} | |
return generator_log_dict | |
else: | |
generator_log_dict = {} | |
# Step 4: Store gradients for the critic (if training the critic) | |
(gan_D_loss, r1_loss, r2_loss), critic_log_dict = self.model.critic_loss( | |
image_or_video_shape=image_or_video_shape, | |
conditional_dict=conditional_dict, | |
unconditional_dict=unconditional_dict, | |
clean_latent=clean_latent, | |
real_image_or_video=clean_latent, | |
initial_latent=image_latent if self.config.i2v else None | |
) | |
loss_ratio = mini_bs * dist.get_world_size() / full_bs | |
total_loss = (gan_D_loss + 0.5 * (r1_loss + r2_loss)) * loss_ratio * self.loss_scale | |
total_loss.backward() | |
critic_grad_norm = self.model.fake_score.clip_grad_norm_( | |
self.max_grad_norm_critic) | |
critic_log_dict.update({"critic_grad_norm": critic_grad_norm, | |
"gan_D_loss": gan_D_loss, | |
"r1_loss": r1_loss, | |
"r2_loss": r2_loss}) | |
return critic_log_dict | |
def generate_video(self, pipeline, prompts, image=None): | |
batch_size = len(prompts) | |
sampled_noise = torch.randn( | |
[batch_size, 21, 16, 60, 104], device="cuda", dtype=self.dtype | |
) | |
video, _ = pipeline.inference( | |
noise=sampled_noise, | |
text_prompts=prompts, | |
return_latents=True | |
) | |
current_video = video.permute(0, 1, 3, 4, 2).cpu().numpy() * 255.0 | |
return current_video | |
def train(self): | |
start_step = self.step | |
while True: | |
if self.step == self.discriminator_warmup_steps and self.discriminator_warmup_steps != 0: | |
print("Resetting critic optimizer") | |
del self.critic_optimizer | |
torch.cuda.empty_cache() | |
# Create new optimizers | |
self.critic_optimizer = torch.optim.AdamW( | |
self.critic_param_groups, | |
betas=(self.config.beta1_critic, self.config.beta2_critic) | |
) | |
# Update checkpointer references | |
self.checkpointer_critic.optimizer = self.critic_optimizer | |
# Check if we're in the discriminator warmup phase | |
self.in_discriminator_warmup = self.step < self.discriminator_warmup_steps | |
# Only update generator and critic outside the warmup phase | |
TRAIN_GENERATOR = not self.in_discriminator_warmup and self.step % self.config.dfake_gen_update_ratio == 0 | |
# Train the generator (only outside warmup phase) | |
if TRAIN_GENERATOR: | |
self.model.fake_score.requires_grad_(False) | |
self.model.generator.requires_grad_(True) | |
self.generator_optimizer.zero_grad(set_to_none=True) | |
extras_list = [] | |
for ii, mini_batch in enumerate(self.dataloader.next()): | |
extra = self.fwdbwd_one_step(mini_batch, True) | |
extras_list.append(extra) | |
generator_log_dict = merge_dict_list(extras_list) | |
self.generator_optimizer.step() | |
if self.generator_ema is not None: | |
self.generator_ema.update(self.model.generator) | |
else: | |
generator_log_dict = {} | |
# Train the critic/discriminator | |
if self.in_discriminator_warmup: | |
# During warmup, only allow gradient for discriminator params | |
self.model.generator.requires_grad_(False) | |
self.model.fake_score.requires_grad_(False) | |
# Enable gradient only for discriminator params | |
for name, param in self.model.fake_score.named_parameters(): | |
if "_cls_pred_branch" in name or "_gan_ca_blocks" in name: | |
param.requires_grad_(True) | |
else: | |
# Normal training mode | |
self.model.generator.requires_grad_(False) | |
self.model.fake_score.requires_grad_(True) | |
self.critic_optimizer.zero_grad(set_to_none=True) | |
extras_list = [] | |
batch = next(self.dataloader) | |
extra = self.fwdbwd_one_step(batch, False) | |
extras_list.append(extra) | |
critic_log_dict = merge_dict_list(extras_list) | |
self.critic_optimizer.step() | |
# Increment the step since we finished gradient update | |
self.step += 1 | |
# If we just finished warmup, print a message | |
if self.is_main_process and self.step == self.discriminator_warmup_steps: | |
print(f"Finished discriminator warmup after {self.discriminator_warmup_steps} steps") | |
# Create EMA params (if not already created) | |
if (self.step >= self.config.ema_start_step) and \ | |
(self.generator_ema is None) and (self.config.ema_weight > 0): | |
self.generator_ema = EMA_FSDP(self.model.generator, decay=self.config.ema_weight) | |
# Save the model | |
if (not self.config.no_save) and (self.step - start_step) > 0 and self.step % self.config.log_iters == 0: | |
torch.cuda.empty_cache() | |
self.save() | |
torch.cuda.empty_cache() | |
# Logging | |
wandb_loss_dict = { | |
"generator_grad_norm": generator_log_dict["generator_grad_norm"], | |
"critic_grad_norm": critic_log_dict["critic_grad_norm"], | |
"real_logit": critic_log_dict["noisy_real_logit"], | |
"fake_logit": critic_log_dict["noisy_fake_logit"], | |
"r1_loss": critic_log_dict["r1_loss"], | |
"r2_loss": critic_log_dict["r2_loss"], | |
} | |
if TRAIN_GENERATOR: | |
wandb_loss_dict.update({ | |
"generator_grad_norm": generator_log_dict["generator_grad_norm"], | |
}) | |
self.all_gather_dict(wandb_loss_dict) | |
wandb_loss_dict["diff_logit"] = wandb_loss_dict["real_logit"] - wandb_loss_dict["fake_logit"] | |
wandb_loss_dict["reg_loss"] = 0.5 * (wandb_loss_dict["r1_loss"] + wandb_loss_dict["r2_loss"]) | |
if self.is_main_process: | |
if self.in_discriminator_warmup: | |
warmup_status = f"[WARMUP {self.step}/{self.discriminator_warmup_steps}] Training only discriminator params" | |
print(warmup_status) | |
if not self.disable_wandb: | |
wandb_loss_dict.update({"warmup_status": 1.0}) | |
if not self.disable_wandb: | |
wandb.log(wandb_loss_dict, step=self.step) | |
if self.step % self.config.gc_interval == 0: | |
if dist.get_rank() == 0: | |
logging.info("DistGarbageCollector: Running GC.") | |
gc.collect() | |
torch.cuda.empty_cache() | |
if self.is_main_process: | |
current_time = time.time() | |
if self.previous_time is None: | |
self.previous_time = current_time | |
else: | |
if not self.disable_wandb: | |
wandb.log({"per iteration time": current_time - self.previous_time}, step=self.step) | |
self.previous_time = current_time | |
def all_gather_dict(self, target_dict): | |
for key, value in target_dict.items(): | |
gathered_value = torch.zeros( | |
[self.world_size, *value.shape], | |
dtype=value.dtype, device=self.device) | |
dist.all_gather_into_tensor(gathered_value, value) | |
avg_value = gathered_value.mean().item() | |
target_dict[key] = avg_value | |