self-forcing / utils /distributed.py
multimodalart's picture
Upload 80 files
0fd2f06 verified
from datetime import timedelta
from functools import partial
import os
import torch
import torch.distributed as dist
from torch.distributed.fsdp import FullStateDictConfig, FullyShardedDataParallel as FSDP, MixedPrecision, ShardingStrategy, StateDictType
from torch.distributed.fsdp.api import CPUOffload
from torch.distributed.fsdp.wrap import size_based_auto_wrap_policy, transformer_auto_wrap_policy
def fsdp_state_dict(model):
fsdp_fullstate_save_policy = FullStateDictConfig(
offload_to_cpu=True, rank0_only=True
)
with FSDP.state_dict_type(
model, StateDictType.FULL_STATE_DICT, fsdp_fullstate_save_policy
):
checkpoint = model.state_dict()
return checkpoint
def fsdp_wrap(module, sharding_strategy="full", mixed_precision=False, wrap_strategy="size", min_num_params=int(5e7), transformer_module=None, cpu_offload=False):
if mixed_precision:
mixed_precision_policy = MixedPrecision(
param_dtype=torch.bfloat16,
reduce_dtype=torch.float32,
buffer_dtype=torch.float32,
cast_forward_inputs=False
)
else:
mixed_precision_policy = None
if wrap_strategy == "transformer":
auto_wrap_policy = partial(
transformer_auto_wrap_policy,
transformer_layer_cls=transformer_module
)
elif wrap_strategy == "size":
auto_wrap_policy = partial(
size_based_auto_wrap_policy,
min_num_params=min_num_params
)
else:
raise ValueError(f"Invalid wrap strategy: {wrap_strategy}")
os.environ["NCCL_CROSS_NIC"] = "1"
sharding_strategy = {
"full": ShardingStrategy.FULL_SHARD,
"hybrid_full": ShardingStrategy.HYBRID_SHARD,
"hybrid_zero2": ShardingStrategy._HYBRID_SHARD_ZERO2,
"no_shard": ShardingStrategy.NO_SHARD,
}[sharding_strategy]
module = FSDP(
module,
auto_wrap_policy=auto_wrap_policy,
sharding_strategy=sharding_strategy,
mixed_precision=mixed_precision_policy,
device_id=torch.cuda.current_device(),
limit_all_gathers=True,
use_orig_params=True,
cpu_offload=CPUOffload(offload_params=cpu_offload),
sync_module_states=False # Load ckpt on rank 0 and sync to other ranks
)
return module
def barrier():
if dist.is_initialized():
dist.barrier()
def launch_distributed_job(backend: str = "nccl"):
rank = int(os.environ["RANK"])
local_rank = int(os.environ["LOCAL_RANK"])
world_size = int(os.environ["WORLD_SIZE"])
host = os.environ["MASTER_ADDR"]
port = int(os.environ["MASTER_PORT"])
if ":" in host: # IPv6
init_method = f"tcp://[{host}]:{port}"
else: # IPv4
init_method = f"tcp://{host}:{port}"
dist.init_process_group(rank=rank, world_size=world_size, backend=backend,
init_method=init_method, timeout=timedelta(minutes=30))
torch.cuda.set_device(local_rank)
class EMA_FSDP:
def __init__(self, fsdp_module: torch.nn.Module, decay: float = 0.999):
self.decay = decay
self.shadow = {}
self._init_shadow(fsdp_module)
@torch.no_grad()
def _init_shadow(self, fsdp_module):
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
with FSDP.summon_full_params(fsdp_module, writeback=False):
for n, p in fsdp_module.module.named_parameters():
self.shadow[n] = p.detach().clone().float().cpu()
@torch.no_grad()
def update(self, fsdp_module):
d = self.decay
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
with FSDP.summon_full_params(fsdp_module, writeback=False):
for n, p in fsdp_module.module.named_parameters():
self.shadow[n].mul_(d).add_(p.detach().float().cpu(), alpha=1. - d)
# Optional helpers ---------------------------------------------------
def state_dict(self):
return self.shadow # picklable
def load_state_dict(self, sd):
self.shadow = {k: v.clone() for k, v in sd.items()}
def copy_to(self, fsdp_module):
# load EMA weights into an (unwrapped) copy of the generator
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
with FSDP.summon_full_params(fsdp_module, writeback=True):
for n, p in fsdp_module.module.named_parameters():
if n in self.shadow:
p.data.copy_(self.shadow[n].to(p.dtype, device=p.device))