File size: 548 Bytes
86abcea
0ab8b8f
9717151
 
09e17e2
 
 
4eb779f
09e17e2
0ab8b8f
 
 
b335d2e
0ab8b8f
 
079a022
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
import streamlit as st
from sklearn import neighbors, datasets

with st.form(key='my_form'):
  sLen = st.slider('Sepal lenght(cm) ', 0.0, 10.0)
  sWid = st.slider('Sepal width(cm) ', 0.0, 10.0)
  pLen = st.slider('Petal lenght(cm) ', 0.0, 10.0)
  pWid = st.slider('Petal width(cm) ', 0.0, 10.0)
  st.form_submit_button('Predict')

iris = datasets.load_iris()
X,y = iris.data, iris.target
knn = neighbors.KNeighborsClassifier(n_neighbors=3) #k = 3,4,5,6
knn.fit(X,y)
predict = knn.predict([[sLen,sWid,pLen,pWid]])
st.text(iris.target_names[predict])