File size: 1,106 Bytes
b013073
3c50af5
 
b013073
3c50af5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import streamlit as st
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

# Titolo dell'app
st.title("πŸ€– Chatbot DeepSeek Transformers + Streamlit")

@st.cache_resource
def load_model():
    model_name = "deepseek-ai/DeepSeek-Coder-V2-Instruct"
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
    return tokenizer, model

tokenizer, model = load_model()

if "chat_history" not in st.session_state:
    st.session_state.chat_history = []

user_input = st.text_input("Scrivi il tuo messaggio:")

if user_input:
    st.session_state.chat_history.append(("πŸ§‘", user_input))

    inputs = tokenizer(user_input, return_tensors="pt").to(model.device)
    outputs = model.generate(**inputs, max_new_tokens=256, do_sample=True, temperature=0.7)
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)

    st.session_state.chat_history.append(("πŸ€–", response))

for speaker, msg in st.session_state.chat_history:
    st.markdown(f"**{speaker}**: {msg}")