test24 / main.py
Niansuh's picture
Update main.py
1bfa801 verified
raw
history blame
10.1 kB
from __future__ import annotations
import re
import random
import string
import uuid
import json
from aiohttp import ClientSession
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from typing import List, Dict, Any, Optional
from datetime import datetime
from fastapi.responses import StreamingResponse
# Custom exception for model not working
class ModelNotWorkingException(Exception):
def __init__(self, model: str):
self.model = model
self.message = f"The model '{model}' is currently not working. Please wait for NiansuhAI to fix this. Thank you for your patience."
super().__init__(self.message)
# Mock implementations for ImageResponse and to_data_uri
class ImageResponse:
def __init__(self, url: str, alt: str):
self.url = url
self.alt = alt
def to_data_uri(image: Any) -> str:
return "data:image/png;base64,..." # Replace with actual base64 data
class AsyncGeneratorProvider:
pass
class ProviderModelMixin:
pass
class Blackbox(AsyncGeneratorProvider, ProviderModelMixin):
url = "https://www.blackbox.ai"
api_endpoint = "https://www.blackbox.ai/api/chat"
working = True
supports_stream = True
supports_system_message = True
supports_message_history = True
default_model = 'blackbox'
models = [
'blackbox',
'gemini-1.5-flash',
"llama-3.1-8b",
'llama-3.1-70b', # Example of a non-working model
'llama-3.1-405b',
'ImageGenerationLV45LJp',
'gpt-4o',
'gemini-pro',
'claude-sonnet-3.5',
]
# Define the working status of models
model_status = {
'blackbox': True,
'gemini-1.5-flash': True,
'llama-3.1-8b': True,
'llama-3.1-70b': False, # Non-working model
'llama-3.1-405b': True,
'ImageGenerationLV45LJp': True,
'gpt-4o': True,
'gemini-pro': True,
'claude-sonnet-3.5': True,
}
agentMode = {
'ImageGenerationLV45LJp': {'mode': True, 'id': "ImageGenerationLV45LJp", 'name': "Image Generation"},
}
trendingAgentMode = {
"blackbox": {},
"gemini-1.5-flash": {'mode': True, 'id': 'Gemini'},
"llama-3.1-8b": {'mode': True, 'id': "llama-3.1-8b"},
'llama-3.1-70b': {'mode': True, 'id': "llama-3.1-70b"},
'llama-3.1-405b': {'mode': True, 'id': "llama-3.1-405b"},
}
userSelectedModel = {
"gpt-4o": "gpt-4o",
"gemini-pro": "gemini-pro",
'claude-sonnet-3.5': "claude-sonnet-3.5",
}
model_aliases = {
"gemini-flash": "gemini-1.5-flash",
"flux": "ImageGenerationLV45LJp",
}
@classmethod
def get_model(cls, model: str) -> str:
if model in cls.models:
return model
elif model in cls.userSelectedModel:
return model
elif model in cls.model_aliases:
return cls.model_aliases[model]
else:
return cls.default_model
@classmethod
async def create_async_generator(
cls,
model: str,
messages: List[Dict[str, str]],
proxy: Optional[str] = None,
image: Optional[Any] = None,
image_name: Optional[str] = None,
**kwargs
) -> Any:
model = cls.get_model(model)
# Check if the model is working
if not cls.model_status.get(model, False):
raise ModelNotWorkingException(model)
headers = {
"accept": "*/*",
"accept-language": "en-US,en;q=0.9",
"cache-control": "no-cache",
"content-type": "application/json",
"origin": cls.url,
"pragma": "no-cache",
"referer": f"{cls.url}/",
"sec-ch-ua": '"Not;A=Brand";v="24", "Chromium";v="128"',
"sec-ch-ua-mobile": "?0",
"sec-ch-ua-platform": '"Linux"',
"sec-fetch-dest": "empty",
"sec-fetch-mode": "cors",
"sec-fetch-site": "same-origin",
"user-agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/128.0.0.0 Safari/537.36"
}
if model in cls.userSelectedModel:
prefix = f"@{cls.userSelectedModel[model]}"
if not messages[0]['content'].startswith(prefix):
messages[0]['content'] = f"{prefix} {messages[0]['content']}"
async with ClientSession(headers=headers) as session:
if image is not None:
messages[-1]["data"] = {
"fileText": image_name,
"imageBase64": to_data_uri(image)
}
random_id = ''.join(random.choices(string.ascii_letters + string.digits, k=7))
data = {
"messages": messages,
"id": random_id,
"previewToken": None,
"userId": None,
"codeModelMode": True,
"agentMode": {},
"trendingAgentMode": {},
"userSelectedModel": None,
"userSystemPrompt": None,
"isMicMode": False,
"maxTokens": 4096,
"playgroundTopP": 0.9,
"playgroundTemperature": 0.5,
"isChromeExt": False,
"githubToken": None,
"clickedAnswer2": False,
"clickedAnswer3": False,
"clickedForceWebSearch": False,
"visitFromDelta": False,
"mobileClient": False,
"webSearchMode": False,
}
async with session.post(cls.api_endpoint, json=data, proxy=proxy) as response:
response.raise_for_status()
if model == 'ImageGenerationLV45LJp':
response_text = await response.text()
url_match = re.search(r'https://storage\.googleapis\.com/[^\s\)]+', response_text)
if url_match:
image_url = url_match.group(0)
yield ImageResponse(image_url, alt=messages[-1]['content'])
else:
raise Exception("Image URL not found in the response")
else:
response_content = ""
async for chunk in response.content.iter_any():
if chunk:
decoded_chunk = chunk.decode(errors='ignore')
decoded_chunk = re.sub(r'\$@\$v=[^$]+\$@\$', '', decoded_chunk)
if decoded_chunk.strip():
response_content += decoded_chunk
# Check if the response content is empty
if not response_content.strip():
raise ModelNotWorkingException(model)
yield response_content
# FastAPI app setup
app = FastAPI()
class Message(BaseModel):
role: str
content: str
class ChatRequest(BaseModel):
model: str
messages: List[Message]
stream: Optional[bool] = False # Add this for streaming
def create_response(content: str, model: str, finish_reason: Optional[str] = None) -> Dict[str, Any]:
return {
"id": f"chatcmpl-{uuid.uuid4()}",
"object": "chat.completion.chunk",
"created": int(datetime.now().timestamp()),
"model": model,
"choices": [
{
"index": 0,
"delta": {"content": content, "role": "assistant"},
"finish_reason": finish_reason,
}
],
"usage": None,
}
@app.post("/niansuhai/v1/chat/completions")
async def chat_completions(request: ChatRequest):
# Validate the model
valid_models = Blackbox.models + list(Blackbox.userSelectedModel.keys()) + list(Blackbox.model_aliases.keys())
if request.model not in valid_models:
raise HTTPException(status_code=400, detail=f"Invalid model name: {request.model}. Valid models are: {valid_models}")
messages = [{"role": msg.role, "content": msg.content} for msg in request.messages]
try:
async_generator = Blackbox.create_async_generator(
model=request.model,
messages=messages,
image=None, # Pass the image if required
image_name=None # Pass image name if required
)
except ModelNotWorkingException as e:
raise HTTPException(status_code=503, detail=str(e))
if request.stream:
async def generate():
async for chunk in async_generator:
if isinstance(chunk, ImageResponse):
image_markdown = f"![image]({chunk.url})"
yield f"data: {json.dumps(create_response(image_markdown, request.model))}\n\n"
else:
yield f"data: {json.dumps(create_response(chunk + '\nNiansuhAI', request.model))}\n\n"
yield "data: [DONE]\n\n"
return StreamingResponse(generate(), media_type="text/event-stream")
else:
response_content = ""
async for chunk in async_generator:
if isinstance(chunk, ImageResponse):
response_content += f"![image]({chunk.url})\n"
else:
response_content += chunk
# Append "\nNiansuhAI" to the final response content
response_content += "\n**NiansuhAI**"
return {
"id": f"chatcmpl-{uuid.uuid4()}",
"object": "chat.completion",
"created": int(datetime.now().timestamp()),
"model": request.model,
"choices": [
{
"message": {
"role": "assistant",
"content": response_content
},
"finish_reason": "stop",
"index": 0
}
],
"usage": None,
}
@app.get("/niansuhai/v1/models")
async def get_models():
return {"models": Blackbox.models}